
I ’- 

I .  

.?olut, ion of t n e  Z u l e r  Eqiuat i ~ r s  With 

V i s cc us-: nv is c i d I n t or a c t  i o rl _“or  :! i g9 

?,eypolds  Number Trarsoni  3 F l n w  P 3 s t  

, J inqT’90dy Z o n f i  Zcrat  ions 



Solu t ion  of the  Eu le r  Equat ions  With 

Viscous-Inviscid I n t e r a c t i o n  f o r  High 

Reynolds Number Transonic  Flow Past 

Wing/Body Conf igu ra t ions  

Keith Koenig 
Assoc ia te  P r o f e s s o r  

Department of Aerospace Engineering 
Drawer A 

M i s s i s s i p p i  State ,  MS 39762 

F i n a l  Report 
N A S A  Research Grant 

NAG-1 -362 



A ckno w l  ed gemen t s 

T h i s  work has been supported by the  NASA Langley Research Center  

under t he  N A S A  Research Grant NAG-1-362. Mr. Edgar G. Waggoner served  as 

t h e  NASA Technical  Officer and has a b l y  d i r ec t ed  the  focus of t h i s  re- 

search. D r .  J i m  Luckering and Dr. KyleAnderson both of Langley have g iven  

v a l u a b l e  h e l p  i n  g r i d  refinements and i n  mas ter ing  the  Langley computer 

s y s t e m .  Dr. David L.  W h i t f i e l d  and Ph.D. c a n d i d a t e  Mark Janus,  both a t  

M i s s i s s i p p i  S ta te  Univers i ty ,  have very generous ly  provided t e c h n i c a l  

guidance and i n s i g h t  i n t o  the  workings of  the  code and have made s i g n i f i -  

c a n t  c o n t r i b u t i o n s  t o  i ts  refinement.  Also a t  M i s s i s s i p p i  S ta te ,  L t .  Col. 

Hyun J i n  K i m  and Mr. T i m  Sanford provided v a l u a b l e  a s s i s t a n c e  i n  p l o t t i n g  

g r i d s  and program output .  F i n a l l y ,  without  t he  a i d  of Mrs. Lisa W. 

G r i f f i n  much of t h i s  work would n o t  have been p o s s i b l e .  For t h e  p a s t  

three yea r s ,  as an undergraduate and graduate  s t u d e n t ,  she has s t r u g g l e d  

with bad phone l i n e s ,  seemingly e n d l e s s  coding r e v i s i o n s ,  mysterious 

o p e r a t i n g  systems, t e d i o u s  p l o t t i n g  and s t r a n g e  e x p l i c i t  v e c t o r  code. Her 

e f fo r t s  and a b i l i t i e s  are most g r a t e f u l l y  a p p r e c i a t e d .  

. 

V' 



L i s t  of Symbols 

Y 

The i tem i n  parentheses  i n d i c a t e s  t he  equat ion  number or s e c t i o n  where the  

symbol first appears. 

c o e f f i c i e n t  m a t r i c e s  of t h e  nonconservative Eu le r  equa t ions ,  (App. C )  

speed of sound, ( 9 ) ;  chord l e n g t h ,  (Sect. V I )  

energy per  u n i t  volume, ( 1  ) 

f l u x  v e c t o r s  i n  C a r t e s i a n  coord ina te s ,  ( 1 )  

i n d i c e s  r e p r e s e n t i n g  5 , q , c  d i r e c t i o n s ,  (4b)  

r e p r e s e n t a t i v e  c u r v i l i n e a r  coord ina te s ,  ( 9 )  

i n d i c e s  r e p r e s e n t i n g  elements of t h e  f l u x  Jacob ian  matrices, (6b) 

normal t o  ce l l  face, ( 2 c ) ;  time l e v e l ,  (5 )  

s t a t i c  p r e s s u r e ,  ( 1 )  

conserved dependent v a r i a b l e s  i n  Car t e s i an  c o o r d i n a t e s ,  (1 )  

nonconserved dependent v a r i a b l e s ,  (C3) 

time, ( 1 )  

v e l o c i t y  components i n  Car t e s i an  coord ina te s ,  (1 )  

boundary l a y e r  f r i c t i o n  v e l o c i t y ,  (Sec t .  I V )  

C a r t e s i a n  coord ina te s ,  (1 )  

r e p r e s e n t a t i v e  element of t he  dependent v a r i a b l e  v e c t o r ,  (23) 

f l u x  Jacob ian  matrices, (6b )  

r e p r e s e n t a t i v e  element of t h e  c o e f f i c i e n t  m a t r i c e s ,  (21)  

p r e s s u r e  c o e f f i c i e n t  w i t h  r e s p e c t  t o  freestream c o n d i t i o n s ,  (F igu res )  

f l u x  v e c t o r s  i n  t he  transformed equat ions ,  (2 )  

i n d i c e s  f o r  computational g r i d  l i n e s ,  (Sect. V I )  

shape f a c t o r ,  (Sect. I V )  

i d e n t i t y  ma t r ix ,  (8b) 
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Jacob ian  ma t r ix  of the t r ans fo rma t ion  from C a r t e s i a n  t o  c u r v i l i n e a r  
c o o r d i n a t e s ,  (2 

r e p r e s e n t a t i v e  f l u x  vec to r  (App. C )  

r e p r e s e n t a t i v e  f l u x  Jacobian m a t r i x  (App. C )  

Mach number, ( 3 1 ) ;  aQ/aG, ( ~ 4 )  

e i g e n v e c t o r s  of nonconservative E u l e r  equa t ions ,  ( C 1 1 )  

conserved dependent va r i ab le s  i n  t h e  transformed equa t ions ,  ( 2 )  

r e s i d u a l ,  (1  3 )  

Reynolds number based on mean aerodynamic chord, (Sect. V I )  

c e l l  s u r f a c e  area, (2c)  

t r a n s p o s e ,  ( 1 ) ;  eigenvectors of t h e  c o n s e r v a t i v e  E u l e r  equat ions ,  ( C 1 0 )  

c o n t r a v a r i a n t  v e l o c i t y  components, ( 2 )  

r e p r e s e n t a t i v e  unknown dependent v a r i a b l e  v e c t o r ,  (21)  

unknown dependent v a r i a b l e  v e c t o r  i n  t h e  two p a s s  a lgor i thm,  ( 1 4 )  

ang le  of at tack, (F igu res )  

r a t i o  of s p e c i f i c  heats, ( 1 )  

spa t i a l  d i f f e r e n c e  opera t ion ,  ( 3 )  

boundary layer displacement t h i c k n e s s ,  (Sec t .  IV) 

c u r v i l i n e a r  coord ina te s ,  ( 2 )  

c o n t r a v a r i a n t  v e l o c i t y ,  k,u+k v+kzw, ( C 7 )  

r e p r e s e n t a t i v e  coePf i c i en t  ma t r ix  f o r  t h e  nonconserva t ive  Eu le r  
equa t ion ,  (App. C) 

e igenva lues ,  (9 

Y 

cel l  volume, (2a) 

d e n s i t y ,  ( 1 )  

time i n  transformed equat ions ,  ( 2 )  

- Y-l (u2  + v* + "21, (C7) 
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d i f f e r e n c e  o p e r a t o r  (usually f i r s t  o r d e r ) ,  ( 2 a )  

d iagonal  m a t r i x  of e igenvalues ,  ( C 1 5 )  

del  o p e r a t o r ,  ( 2 a )  

f r e e s t r e a m  c o n d i t i o n s ,  (31) 

( )/lVkl, ( C 1 7 )  

boundary layer edge condi t ions ,  (Sect. I V  1 

vec to r  q u a n t i t y  

terms a s s o c i a t e d  with p o s i t i v e  o r  nega t ive  e igenvalues ,  ( 1 0 ~ )  

e q u i v a l e n t  incompress ib le  boundary l a y e r  terms, (Sect. IV) 
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I .  I n t r o d u c t i o n  

During t h e  mid  1970's a computer program f o r  t h e  s o l u t i o n  of the 

E u l e r  e q u a t i o n s  was developed by researchers a t  Sverdrup Technology, I n c .  

f o r  t r a n s o n i c  and supersonic  a p p l i c a t i o n s .  Th i s  program, known as ARO- 

1 , ( 1 5 9 1 6 )  was an e x p l i c i t ,  f i n i t e  volume formula t ion  based on McCormack's 

p r e d i c t o r - c o r r e c t o r  algorithm. From t h i s  code has evolved a long  l i n e  of 

E u l e r  equa t ion  s o l v e r s  whose c u r r e n t  members now s h a r e  only t he  f i n i t e  

volume fo rmula t ion  with the pro to type .  One of these c u r r e n t  programs is 

t h e  s u b j e c t  of t h e  fo l lowing  p resen ta t ion .  

The code of i n t e r e s t  here goes by t h e  (rather c o l o r f u l )  name BROWN 

MULE. I t  is a three-dimensional,  time a c c u r a t e ,  f i n i t e  volume E u l e r  

s o l v e r  (as  i t s  p r o g e n i t o r s )  with e x t e n s i v e  re f inements .  ( ' , 2 9 3 )  The so lu-  

t i o n  scheme is an i m p l i c i t ,  upwind, s p l i t - f l u x  vec to r  formula t ion  i n  which 

t h e  f l u x  v e c t o r s  are d i v i d e d  i n t o  subvec to r s  based on the  s i g n s  of t h e  

e igenva lues .  Prudent approximate f a c t o r i z a t i o n  then l e a v e s  only a sys t em 

of b lock  b id i agona l  equat ions  t o  be  so lved  which is r e a d i l y  accomplished. 

The upwind scheme used here requires no a r t i f i c i a l  d i s s i p a t i o n  and is 

c o n d i t i o n a l l y  s t ab le  i n  three-dimensions. Furthermore,  because t h e  pres- 

e n t  i n t e r e s t  is i n  s t e a d y  s ta te  s o l u t i o n s ,  l o c a l  time s t e p p i n g  can be used 

thereby  improving the convergence rate.  The r e s u l t i n g  program is easy t o  

use ,  r e q u i r i n g  only  a minimum of i n p u t  v a r i a b l e s  and parameters, and 

a c h i e v e s  eng inee r ing  q u a l i t y  answers i n  reasonably  s h o r t  machine time. A 

d i sadvan tage  is the  r e l a t i v e l y  l a r g e  memory needed t o  s t o r e  the  flow 

v a r i a b l e s  and s p l i t  f l u x  v e c t o r s ,  a l t hough  w i t h  t h e  l a t e s t  gene ra t ion  of 



supercomputers t h i s  is not  a s e r i o u s  l i m i t a t i o n .  F u r t h e r  h i s t o r y  and 

background concerning BROWN MULE and i t s  fami ly  may be found i n  References 

1 and 3. 

As p a r t  of t h e  p re sen t  r e sea rch ,  a ve r s ion  of  BROWN MULE was devel- 

oped t o  i n c l u d e  c a l c u l a t i o n  of v i s c o u s  e f f e c t s ,  i n c l u d i n g  effects of 

moderate flow s e p a r a t i o n .  T h i s  is accomplished through an unique inve r se  

i n t e g r a l  boundary layer  s o l u t i o n  which uses  an a n a l y t i c a l  d e s c r i p t i o n  of 

t he  v e l o c i t y  p r o f i l e .  (’ T h i s  p r o f i l e  and o t h e r  suppor t ing  r e l a t i o n s h i p s  

a r e  based on curve  f i ts  t o  exper imenta l ly  determined compressible turbu- 

l e n t  boundary l a y e r s  inc luding  sepa ra t ed  l a y e r s .  The v i scous  e f f e c t s  a r e  

imposed upon the  f low through a s u r f a c e  sou rce  model which is simply imple- 

mented as a modified s o l i d  wal l  boundary cond i t ion .  These v i scous  calcu- 

l a t i o n s  are q u i t e  e f f i c i e n t  and impose n e g l i g i b l e  time and s t o r a g e  

p e n a l t i e s  on t h e  o v e r a l l  program so t h a t  t he  c a p a b i l i t y  of t h e  program is 

s i g n i f i c a n t l y  enhamed a t  l i t t l e  ccst. 

T h i s  paper e x p l a i n s  t h e  t h e o r e t i c a l  and numerical  bases  of t h e  pro- 

gram wi th  emphasis on the l o g i c  behind t h e  equa t ion  development. I n  

a d d i t i o n ,  t he  program is f u l l y  d e t a i l e d  so  t h a t  a u s e r  can  qu ick ly  become 

familiar w i t h  i ts opera t ion .  

Because t h i s  code is intended f o r  computation of complex flow f i e l d s ,  

an a p p l i c a t i o n  t o  t r a n s o n i c  f low p a s t  a winglbody c o n f i g u r a t i o n  represen- 

t a t i v e  of a modern wide body turbofan  t r a n s p o r t  is a l s o  presented .  A 

companion paper ( 1 7 )  desc r ibes  i n  d e t a i l  the  e x p l i c i t  v e c t o r i z a t i o n  of t h i s  

program on the  NASA Langley Research Center VPS-32. 
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11. Formulation of the  Numerical Procedure  

Governing Equat ions  

The governing equat ions  f o r  i n v i s c i d  flow, the Eu le r  equat ions ,  take 
t h e  form 

where 

f = cpu, pu2 + p, puv, P U W ,  u ( ~ + P > I  T 

T h i s  form of t h e  equat ions  ( o t h e r  forms a r e  p o s s i b l e  w i t h  a l g e b r a i c  ma- 

n i p u l a t i o n )  is s a i d  t o  be in s t rong  conse rva t ion  form ( l ) because the  f unda- 

menta l  p r o p e r t i e s  conserved in na tu re  - mass ( p ) ,  momentum (pu, pv, p w )  and 

energy  ( e )  - always appear a s  d i s t i n c t  e n t i t i e s  in t he  equat ions .  The 

t r a n s f o r m a t i o n  (2)  ( o u t l i n e d  i n  Appendix A )  us ing  c u r v i l i n e a r  coord ina te s ,  

3 



leads to 

3Q 3F 3G 3H = - + - + - + -  
ar as a n  as 

where 
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- - 
St = -xTs, V y  z T C z  

Di s cret i z a t  i o n  

To d iscre t ize  (2 ) ,  l e t  us i n t e g r a t e  equat ion  ( 2 )  over t h e  volume of a 

computa t iona l  cell .  

The mean 

\ %  
V 

va lue  theorem of ca l cu lus  pe rmi t s  u s  t o  write 

dv = v($) 

wi th in  t h e  c e l l  AQ where (G) is an e f f e c t i v e  average v a l u e  of - 
aT 

(2b) 

volume v. 

The f l u x  terms combine t o  g i v e  /V*Fdv, where V is the  divergence ope ra to r  
+ 

( i n  t h e  c u r v i l i n e a r  coord ina te  frame) and F is a vec to r  wi th  components F ,  

5 



G and H .  

The d ivergence  theorem t h e n  permits u s  t o  write 

IV*$d = /$*$dS 

where S is the  ce l l  surface and n is the  u n i t  outward normal. 

S 

-* 

The f l u x  terms - F ,  G, H - t r a n s p o r t  f l u i d  p r o p e r t i e s  a c r o s s  S,rl ,r ;  f a c e s  

of a ce l l ,  r e s p e c t i v e l y ,  so t h a t  (2c)  becomes 

where e f f e c t i v e  va lues  of F ,  G and H are used on the  ce l l  

faces. Using ( 2 b )  and (2d) i n  (2a ) ,  l e t t i n g  6 = ( lout - ( l i n t  r e a l i z i n g  

Av = A C A q A c ,  and d i v i d i n g  through by Av g i v e s  

Equat ion  ( 3 )  might have been obtained from equat ion  ( 2 )  by simply approxi- 

mat ing the p a r t i a l  d e r i v a t i v e s  i n  (2)  wi th  s u i t a b l e  d i f f e r e n c e s .  However, 

t he  procedure [ ( 2 a )  through (2d)]  here shows more c l e a r l y  the  f i n i t e  volume 

n a t u r e  of e q u a t i o n  (3 )  and, therefore ,  of t h e  e n t i r e  problem. The volume 

approach is, i n  g e n e r a l ,  a more p h y s i c a l l y  meaningful approach and is 

recommended whenever the o p t i o n  f o r  t h i s  approach ar ises .  I t  is now neces- 

s a r y  t o  precisely d e f i n e  t h e  i n d i v i d u a l  o p e r a t o r s  and terms i n  equat ion  

(3)  and t o  

o p e r a t o r  is 

f o r m u l a t e  t h e  p r e c i s e  numerical  problem t o  be  solved.  The 6 

t h e  c e n t r a l  d i f f e r e n c e  o p e r a t o r  n o t a t i o n  and means, e.g. 

6 



To i n t e r p r e t  t h i s  r e l a t i o n  we r e a l i z e  t h a t  t h e  c e l l  c e n t e r  is a t  i ,  s o  

t h a t  i + 1/2  and i - 112 s i g n i f y  c e l l  faces, and thus  t he  f l u x  vec to r s  

(F ,  G,  H )  are eva lua ted  a t  c e l l  faces as d ic ta ted  by the f i n i t e  volume 

approach. The computational coord ina te s  ( 5 ,  TI, s) correspond d i r e c t l y  t o  

t h e  c e l l  i n d i c e s  (1, j, k) s o  t h a t  AS - An = As = 1 and (3)  can be w r i t t e n  

as (3  1 

A Q  = -AT (6iF + S j G  + 6kH)  ( 4 b )  

We w i l l  be advancing the s o l u t i o n  i n  time. The most r e c e n t l y  computed 

time s t e p  is the  n s t e p ,  o r  l e v e l .  Equat ion  ( 4 b )  might t h e n  be  w r i t t e n  as 

wi th  = qn+l - Q" 

The unknowns are  r e a l l y  Qn", bu t  it is convenient t o  work wi th  AQn as the  

unknowns because even tua l ly ,  as we g e t  c l o s e r  t o  t h e  f i n a l  s o l u t i o n ,  A Q n  

w i l l  go t o  ze ro .  T h i s  fac t  w i l l  be used t o  improve our computational 

ef f i c iency  . 
L i n e a r  i z a t  i on 

Now, t h e  f l u x  vec to r s  are e x p l i c i t  f u n c t i o n s  of Q, s o  t h a t  w e  can 

w r i  t e  ( 4  , 5,6  1 

3H n n+l - Qn) + ... = H n + (,) a H  n A Q ~  + ..- = H n +  (x! ( Q  
Hn+ 1 

7 



The f l u x  v e c t o r s  are non l inea r  i n  the dependent v a r i a b l e s ,  Q o r  AQ. For a 

manageable numerical  s o l u t i o n  they m u s t  be l i n e a r i z e d ,  which is accom- 

p l i s h e d  by dropping terms of order ( A Q n I 2  and h igher .  The d e r i v a t i v e s  

s u c h  as aF/aQ, which appear i n  t h e  expres s ions  f o r  t he  f l u x  vec to r s ,  form 

matrices known as the Jacob ian  matrices f o r  each f l u x  vec tor .  Because 

e q u a t i o n  ( 1  ) o r  (5 )  ac tua l ly  r e p r e s e n t s  5 d i s t i n c t  equa t ions ,  there a r e  5 

e l emen t s  t o  each of Q, F ,  G and H and the f l u x  Jacob ian  matrices t h e r e f o r e  

each c o n t a i n  25 e lements ,  

With t h i s  n o t a t i o n ,  t h e  l i n e a r i z e d  f l u x  v e c t o r s  become, 

+ A" A Q ~  + ... n n n  F;+' = F5 + A5,AQ1 52 2 + A;~AQ; 

w i t h  similar e x p r e s s i o n s  f o r  G"+l and Hn+ ' .  

Using ( 6 b ) ,  and t h e  companion express ions  f o r  G and H ,  i n  (5)  g i v e s  

A Q ~  n = - A T ( ~ ~ F ~  + 6 i  ( A ~ ~ A Q ~ +  ...+ A" A Q ~ ) )  + s j ~ y  + ~ ~ ( B ~ ~ A Q ~ + . . . + B "  A Q ~ )  
15 5 15 5 

+ 6 H" + 6 k ( ~ : 1 ~ ~ : + . . . + ~ n  AQ") 

(A" AQ"+. . .+ A" A Q ~ )  + 6 G" + 6 .(B" A Q ~ + .  n . .+B" AB") 

k l  15 5 
(7 1 

n n 
+ '1 51 1 55 5 j 5  J 51 55 5 AQ5 = - A T ( ~ ~ F ~  

+cn AQ") + 6 k ~ g n  + t jk(cg, .~~?. . .  55 5 

8 



Equat ions  ( 7 )  a r e  an i m p l i c i t  set of l i n e a r  equa t ions  f o r  t h e  unknowns 

AQ". They are i m p l i c i t  i n  two ways. F i r s t ,  each AQn depends on a l l  f i v e  

AQ", g iv ing  a system i m p l i c i t  w i t h  respect t o  t h e  dependent v a r i a b l e s  a t  a 

g i v e n  l o c a t i o n  i n  t h e  g r i d .  Second, t h e  d i f f e r e n c e  ope ra to r  in t roduces  

ne ighbor ing  va lues  of the  unknowns ( r e c a l l ,  f o r  example, 

n+ 1 n+ 1 
i-1 - 

2 2 

-F t h u s  g iv ing  a 6 F:+' = Fi+, - 

s p a t i a l l y  i m p l i c i t  system as w e l l .  Equat ions ( 7 )  can  be  a l g e b r a i c a l l y  

r ea r r anged  i n t o  the fo l lowing  matr ix  equat ion ,  

L 

6 . A n  +6 .Bn +& C" . .   AT(^ A" +& .Bn +6 k C y q Q y  
IT( 1 12 J 12 k 12 i 15 J 15 

'T(6iA52 n +6 J .Bn 52 +6 k C" 52 1. . . 1 + A T  ( 6  iAg5+6 jBg5+6 ,C,!&Qn5 

o r ,  i n  compact n o t a t i o n  

( I +AT 6 iA +A T 6 . B *+AT 6 kc ) AQn= -A 'I ( 6 iF "+ 6 . Gn+ 6 kH ") (8b 1 
J J 

The dot i n d i c a t e s  t h a t  t h e  d i f f e r e n c e  ope ra to r  ac t s  on t h e  products  AAQ", 

BAQ" and CAQ". 

Equat ions  (8)  a r e  t h e  expression of t h e  E u l e r  equa t ions  which are t o  

be  numer ica l ly  solved.  I t  might be wise, a t  t h i s  p o i n t ,  t o  review t h e  

basic s t e p s  l e a d i n g  t o  (8).  We s t a r t  wi th  the Eu le r  equa t ions  i n  conser- 
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v a t i v e  d i f f e r e n t i a l  form i n  Car tes ian  coord ina te s ,  equa t ion  ( 1 ) .  These a r e  

t ransformed t o  c u r v i l i n e a r  coord ina te s ,  equa t ion  ( 2 ) .  The transformed 

equa t ions  are d i s c r e t i z e d  by i n t e g r a t i n g  over a c e l l  volume t o  y i e l d  

e q u a t i o n  ( 3 ) .  Details of the d i s c r e t i z a t i o n  are in t roduced  and f i n a l l y  

t h e  f l u x  v e c t o r s  are l i n e a r i z e d  with r e s p e c t  t o  the dependent v a r i a b l e s .  

The r e s u l t  of these l a s t  opera t ions  is equa t ion  ( 8 ) .  Thus w e  see that  (8)  

i s  a d i s c r e t i z e d ,  l i n e a r i z e d ,  f i n i t e  volume fo rmula t ion  of the Eu le r  equa- 

t i o n s .  

E igenvalues  

The problem now becomes one of s o l v i n g  the system of equa t ions  i n  ( 8 ) .  

Var ious  schemes a r e  poss ib l e :  the  scheme used h e r e  is  cen te red  on the 

n o t i o n  t h a t  in format ion  is propagated through a flow f i e l d  i n  c e r t a i n  

p r e f e r r e d ,  o r  c h a r a c t e r i s t i c  d i r e c t i o n s ,  and with c h a r a c t e r i s t i c  ve loc i -  

t i e s .  (The word ' c h a r a c t e r i s t i c ' ,  as used here, has a double meaning. 

The f i rs t  meaning may be t a k e n  as ' p a r t i c i i l a r '  and is motivated by physi-  

cal  arguments, whi le  t h e  second meaning stems from the  mathematical prop- 

erties of systems of p a r t i a l  d i f f e r e n t i a l  equa t ions . )  P hys i ca l l  y , 

i n fo rma t ion  is propagated v i a  bulk f l u i d  motion and v i a  a c o u s t i c  waves. 

Acous t i c  waves t r a v e l  i n  a l l  d i r e c t i o n s  between molecules a t  t h e  l o c a l  

sound speed; the molecules,  meanwhile, are being convected, on t h e  aver- 

age, a t  t h e  bulk f low ve loc i ty .  Thus, the  n e t  a c o u s t i c  wave speed is  the 

sum of  t he  sound speed and b u l k  ve loc i ty .  The f l u i d  v e l o c i t y  and the  n e t  

a c o u s t i c  wave speeds  are  t h e  c h a r a c t e r i s t i c  v e l o c i t i e s .  These concepts  

are mathemat ica l ly  implemented through c o n s i d e r a t i o n  of t h e  e igenvalues  of 

the  f l u x  Jacob ian  matrices. 

10 



The e igenva lues  of the  f l u x  Jacobian  m a t r i c e s  are the  mathematical 

character is t ics  of t h e  system represented  by (8) .  For the present  problem 

they  t u r n  o u t  t o  be i d e n t i c a l  t o  t he  character is t ic  v e l o c i t i e s  w i t h  which 

in fo rma t ion  is propagated i n  the flow. (The theo ry  of characteristics is 

descr ibed ,  a t  l e n g t h ,  i n  Ref. 7 ;  t h e  o p e r a t i o n s  r e q u i r e d  t o  f i n d  t h e  

e igenva lues  of t h e  matrices here a r e  o u t l i n e d  i n  Appendix C). Each f l u x  

ma t r ix  is a 5 x 5 system and has ,  t h e r e f o r e ,  5 e igenva lues  

A i  A i  i = 1 ,  5 with (c,q,r,) r e f e r r i n g  t o  (A,B,C), r e spec t ive ly .  
5' rl' 5' 

A i  

The e igenva lues  for  t h e  f l u x  Jacobian m a t r i c e s  here a re  

A i  = A k  1 + clVkl 

where k = E,rl,5 fo r  F , G , H  r e s p e c t i v e l y ,  c is the  speed of  sound and 

2 2 2 112 
lVkl = ( k x  + k y  + k,) - 

I n t e r p r e t a t i o n  of t h e  eigenvalues as measures of t he  v e l o c i t i e s  a t  which 

f l u i d  p r o p e r t i e s  and informat ion  a r e  propagated through the  flow f i e l d  is 

e v i d e n t  i n  these express ions .  

F lux  Vector S p l i t t i n g  

To take advantage of t h e  phys ica l  s i g n i f i c a n c e  of t h e  eigenvalues,  we 

write t h e  f l u x  v e c t o r s  as a l i n e a r  combination o f ,  so-ca l led ,  subvec tors  

which have as c o e f f i c i e n t s  t h e  five e igenva lues  of each vector.( '  J 2 * 3 )  

Hence 
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+ AEfil 2 + ASfi3 3 + A 4 f + X 5 f i = 1,5  ( loa)  5 

j = l  
5 i 4  5 i 5 '  Fi 

and s i m i l a r i l y  f o r  

S i n c e ,  X = X k2= A k3, t hen  t h e  first three terms can be combined toge the r  k 

( l o b )  4 5 t o  g i v e  Fi = "fil + X f i4 + X f i5 and s i m i l a r l y  f o r  G and H .  

A very  important sequence of steps is now undertaken. Recall t h a t  t he  

e q u a t i o n s  (8) are s p a t i a l l y  i m p l i c i t .  T h i s  i m p l i c i t  a spec t  of t h e  equa- 

t i o n s  can be removed as follows. The f l u x  v e c t o r s  F,G,H, by ( l o b )  are 

sums of subvec to r s  based on the e igenvalues .  These subvec to r s  can be 

grouped t o g e t h e r  according t o  whether their  e igenva lue  c o e f f i c i e n t s  are 

p o s i t i v e  o r  nega t ive ,  s o  t h a t  

F = F+ + F-, G = G+ + G- and H = H+ + H- (1  O C )  

where, f o r  example, F+ is a subvector made up of t h e  Xf terms which have 

X>O and F- is composed of t h e  remaining Af terms ( w i t h  X < O ) .  

A s imple  p h y s i c a l  idea mot iva tes  t h e  above decomposition of the  f l u x  

v e c t o r s  i n t o  components w i t h  p o s i t i v e  and nega t ive  e igenvalues .  Because 

the e igenva lues  are t h e  characterist ic v e l o c i t i e s  of in format ion  propaga- 

t i o n ,  t hen  the i r  s i g n  i n d i c a t e s  i n  which d i r e c t i o n  informat ion  is c a r r i e d  

th rough  the  flow f i e l d .  Fo r  example, suppose E i n c r e a s e s  t o  t he  r i g h t .  

Then, if A 5  is  p o s i t i v e  t h i s  means it is c a r r y i n g  informat ion  t o  t h e  

r i g h t .  Conversely, a nega t ive  va lue  of A i n d i c a t e s  in format ion  moving 5 
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t o  t h e  l e f t .  Now F r e p r e s e n t s  the  a c t u a l  t r a n s p o r t  of in format ion  through 

t h e  flow. S i n c e  A s  can be  p o s i t i v e  and nega t ive ,  t hen  F can t r a n s p o r t  t o  

a c e l l  from both  the  l e f t  and t h e  r i g h t .  A similar argument a p p l i e s  t o  C 

and H s o  t h a t ,  i n  gene ra l ,  information reaching  a c e l l  comes from a l l  

sur rounding  ce l l s .  The surrounding cel ls ,  themselves,  conta in  unknown 

q u a l i t i e s  s o  t h a t  the  problem is s p a t i a l l y  i m p l i c i t ;  t h e  s o l u t i o n  a t  each 

c e l l  depends on the  s o l u t i o n  i n  a l l  the sur rounding  cel ls .  However, i f  w e  

decompose t h e  f l u x  vec to r s  i n t o  components w i t h  p o s i t i v e  and nega t ive  

e igenva lues  then  we can i s o l a t e  c o n t r i b u t i o n s  t o  a ce l l  due t o  the  f l u x  

from any p a r t i c u l a r  d i r e c t i o n .  The a b i l i t y  t o  i s o l a t e  f l u x  c o n t r i b u t i o n s  

is used t o  develop a numerical a lgo r i thm which, a t  each s t a g e  i n  the 

c a l c u l a t i o n ,  involves  only f l u x  terms t r a n s p o r t i n g  known q u a n t i t i e s  i n t o  

each  c e l l  and thereby removes the  s p a t i a l l y  i m p l i c i t  n a t u r e  of the equa- 

t i o n s .  

Returning now t o  equat ion  development, w e  observe t h a t  each of these 

new subvec to r s  has a Jacobian  matrix a s s o c i a t e d  w i t h  i t ,  tha t  is 

These new subvec to r s  can a l s o  be l i n e a r i z e d  e x a c t l y  as t h e  e n t i r e  vec to r  

was l i n e a r i z e d  t o  y i e l d  equat ion  ( 6 b ) ,  

(F+)"+' = (F+)" + (E')n (Qn+'- an) and so on f o r  the  o t h e r  subvec tors .  aQ 

We now take t h i s  l i n e a r i z a t i o n  p lus  equa t ions  (10) and (11)  t o  form an  

equa t ion  analogous t o  (81, 



+ + + 
(I  + A T B ~ A -  + A T ~ ~ A ;  + A T ~ . B -  + A T ~ . B ~  + A T ~ ~ C -  + A ~ ~ ~ c ; ) A Q ~  = 

J J 
+ + - AT ( 6 i F  + 6iF- + 6.G+ + 6 .C-  + 6 k H  + 6 k H - )  

J J (12 )  

Approximate F a c t o r i z a t i o n  

Equat ion  (12)  is a b lock  t r i d i a g o n a l  sys t em and is s t i l l  i m p l i c i t ,  

b o t h  s p a t i a l l y  and w i t h  r e s p e c t  t o  t h e  dependent v a r i a b l e s  a t  a g iven  

p o i n t .  To e l i m i n a t e  t he  s p a t i a l  i m p l i c i t n e s s ,  an  approximation t o  equa- 

t i o n  ( 1 2 )  is formed v i a  approximate f a c t o r i z a t i o n ,  (8 l 

( I  + A T ~ ~ A ~  + A T ~ . B .  + + A T ~ ~ C * )  + ( I  + A+A; + A T ~ . B ~  + A T G ~ c ~ )  A Q ~  = -ATR n 

(13)  
J J 

+ a + + where R n  = residual = (siF + diF  + 6.G + 6 G- + GkH + 6kH-)n 
J J 

I n  t h i s  form, terms of order    AT)^ appear on t h e  l e f t  hand s i d e  which are 

n o t  i n  t he  o r i g i n a l  equa t ion  ( 1 2 ) .  Consequently t h i s  fo rmula t ion  is, a t  

b e s t ,  second o r d e r  accurate i n  time. We s o l v e  equa t ion  (13) h e r e  w i t h  t h e  

two s t e p  scheme 

+ + 
( I  + A T ~ ~ A :  + A T  J .B-  + A T ~ ~ c . )  x 1  = -ATR" 

(I + A T ~ ~ A ;  + A ? ~ . B ;  + A T ~ ~ c ; )  x 2 1  = x 
J ( 1 4 )  

2 A Q ~  = x 

F i n a l  E q u a t  i ons 

The a lgo r i thm i n  equat ion  ( 1 4 )  is now i l l u s t r a t e d .  Consider t h e  f irst  

e q u a t i o n  m u l t i p l i e d  o u t ,  

1 + 1  + 1  x + A+A x ) +  AT^. ( B + x ~ )  + A ~ G ~ ( C  x = - A T R ~  
J 

and write ou t  t he  f i n i t e  d i f f e r e n c e  o p e r a t i o n s  us ing  a f i rs t  order  s p a t i a l  

1 4  



d i f f e r e n c e .  

The flux matrices (A+,B+,C+) a r e  functions’ of the c e l l  metrics and the  

dependent v a r i a b l e s .  The met r ics  are eva lua ted  a t  t h e  c e l l  faces indi -  

cated by the s u b s c r i p t s  appearing i n  equat ion  (15 ) .  The dependent var i -  

ables t o  be used i n  e v a l u a t i n g  t h e  f l u x  matrices are determined based on 

t h e  facts  t h a t  ( 1 )  t h i s  is a cell  centered ,  f i n i t e  volume scheme so  tha t  

the  dependent v a r i a b l e s  are t a k e n  as cons tan t  w i t h i n  a c e l l ,  and (2 )  t h e  

matrices (A+,B+,C+) involve  only p o s i t i v e  e igenvalues  and r e p r e s e n t  t rans-  

p o r t  i n  t h e  p o s i t i v e  (€,,q,c) d i r e c t i o n s  only.  For example, cons ider ing  

the  6 f l u x  through ce l l  ( i , j , k ) ,  the  f l u x  i n  comes from c e l l  ( i - l , j , k )  

whi le  t he  f l u x  ou t  is from c e l l  ( i , j , k ) ,  which means we u s e  

n t o  e v a l u a t e  ( A  + 1  X ) i - l , j , k .  i , j , k  and Q i - l , j , k  
t o  e v a l u a t e  ( A + x ~ )  n 

Q i , j , k  

To show t h i s  w e  w i l l  express  the f l u x  matrices as f u n c t i o n s  of t h e  depend- 

e n t  v a r i a b l e s  whose i n d i c e s  i n d i c a t e  t he  l o c a t i o n s  a t  which they  are 

eva lua ted .  Equat ion ( 1  5 ) now becomes 

X1 ) I  X1 X1 + n  - “IA (Qi-l  , j , k  i - l , j , k  i - l , j , k  
+ n  

i , j , k  + A T [ A  ( Q i , j , k ) l i , j , k  i , j , k  

X1 - + n  
“ IB  (Qi , j - l  , k ) ’ i , j - l  ,k  i , j - l  ,k X’ + n  

-+ ‘‘IB ( Q i , J , k ) l i , j , k  i , j , k  

+ n  X’ - + n  X1 
“ IC ( Qi, j , k-1 i , j , k-1 i , j , k-1 + ( Q i , j , k ) l i , j , k  i , j , k  
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o r  r e a r r a n g i n g ,  

11 X1 
+ A T [ B + ( Q ~  , j - 1 , k  i , j - 1 , k  i , j S l , k  + A T [ A  (Qi-l , j , k  i - l , j , k x i - 1  , j , k  

1 13 + n  

X1 + n  
+ A.r[c (Qi , j ,k - ,  "i, j , k l  i ,  j ,k-1 (17 )  

Examining equa t ion  (17)  r e v e a l s  t h a t  i f  w e  s t a r t  a t  t h e  lowest index 

boundar ies  and advance i n  t h e  d i r e c t i o n  of i n c r e a s i n g  ( i , j , k )  c o n s i s t e n t  

wi th  t h e  p o s i t i v e  eigenvalues,  then the r i g h t  s i d e  of (17)  is always known 

and t h e r e f o r e  t h e  unknowns, Xi 1 can be  s o l v e d  f o r  d i r e c t l y .  (The 
, j  ,k' 

boundary c o n d i t i o n s  supply t h e  values f o r  the first c e l l . )  

p rocess  is r e f e r r e d  t o  as a forward p a s s ,  i n  t ha t  we march through t h e  

computa t iona l  g r i d  i n  the d i r e c t i o n  of i n c r e a s i n g  ( i , j , k ) .  The problem is 

no l o n g e r  s p a t i a l l y  i m p l i c i t .  Each s t e p  does,  however, r e q u i r e  t he  solu- 

t i o n  of a 5 x 5 system similar t o  equat ion  ( 8 a )  which expresses  the  i n t e r -  

This s o l u t i o n  

..- A d a t i o n  amor,g the Q ' s  at  

a lower  block b id i agona l  

s u b s t i t u t i o n ,  i n  c o n t r a s t  

of e q u a t i o n  (12) .  

each pnfnt,; Formally,  equa t ion  ( 17 1 r e p r e s e n t s  

sys tem which can be  so lved  d i r e c t l y  by forward 

t o  t he  f u l l y  i m p l i c i t  block t r i d i a g o n a l  system 

The second equat ion  i n  ( 1 4 )  is t r e a t e d  i n  e x a c t l y  the same manner as 

above w i t h  t he  except ion  t h a t  nega t ive  e igenva lues  a r e  used. T h i s  means 

the  t r a n s p o r t  is in t h e  nega t ive  ( t , n , c )  d i r e c t i o n s  and tha t  t h e  d i f -  

f e r e n c i n g  proceeds i n  t h e  nega t ive  ( i , j  , k )  d i r e c t i o n s .  For example con- 
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s i d e r i n g  t h e  5 f l u x  through c e l l  ( i , j , k ) ,  t h e  f l u x  i n  crosses face ( i , j , k )  

bu t  comes from C e l l  ( i + l , j , k )  w h i l e  t h e  f l u x  out  crosses f a c e  ( i -1  , j , k )  

bu t  comes from C e l l  ( i ,  j , k ) .  This  gives 

2 
+ ATIA-(Qi+ l  n , j , k ) ' i , j , k  X2 i + l , j , k  ( Q i , j , k  11 i - l , j , k  X2 i , j , k  

- n  - 
, k  

X2 - n  X2 - AT[B ( Q i , j , k ) l i , j - l  , k  i , j , k  + ATIB- (Qy , j+ l  , k ) ' i , j , k  i , . j+l  , k  

) ' i , j , k  X2 i , j , k +  11 X2 - n  - 
AT[c ( Q i , j , k  i , j , k - 1  i , j , k  

or, r e a r r a n g i n g  

- n  X2 1 1 n  X2 i , j , k =  ' i , j , k -  "[* ( Q i + l , j , k ) ' i , j , k  i + l  , j , k -  AT[B ( Q i , J + l , k ) l i , j , k  

X2 - n  - 2 
' i , j + l  , k  " [' ( Qi, j , k+ 1 i , j , k i , j , k+ 1 

(19 )  

I n  equa t ions  ( 1 6 )  through (19)  t h e  i n d i c e s  on Qn and X i n d i c a t e  t h e  loca- 

t i o n  a t  which t h e s e  q u a n t i t i e s  are eva lua ted  whi le  t h e  i n d i c e s  appended t o  

t h e  b r a c k e t s  denote t h e  f a c e s  for which t h e  metrics are t o  be evaluated. 

Equat ion  (19)  represents an upper block b id i agona l  sys t em f o r  t h e  unknown 

Th i s  can be  solved d i r e c t l y  f o r  t h e  unknowns i n  a backward 2 
i , j , k *  vector X 
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p a s s  s t a r t i n g  a t  t he  h i g h e s t  index boundaries and s o l v i n g  i n  t he  negat ive  

2 ( i , j , k )  d i r e c t i o n s  s i n c e ,  at  each s t e p ,  the i + l ,  j + l  or  k + l  values  of X 

are known. Again, a 5x5 sys t em similar t o  equat ion  (8a) must be solved at  

each ( i , j , k )  l o c a t i o n .  Appendix B p rovides  a more complete explanat ion of 

t h e  h i e r a r c h y  of systems embodied i n  equat ions  (16) through (19) .  

With the  s o l u t i o n  f o r  X2 now a v a i l a b l e ,  the l a s t  of equat ions (14 )  

p r o v i d e s  t h e  desired s o l u t i o n  vector  AQ", which, i n  t u r n ,  provides the de- 

pendent v a r i a b l e  vec tor  a t  t h e  n+l time l e v e l ,  

Q"+' ,= Q" + A Q ~  (20 1 



111. Solu t ion  Procedure 

Problem Sta tement  

The s o l u t i o n  p rocess  can now be  presented .  The problem t o  be so lved  

i s  the  sequence of equa t ions  i n  ( 1 4 )  which, when the  f i n i t e  d i f f e r e n c e  

o p e r a t i o n s  are w r i t t e n  o u t ,  become equat ions  (16 )  and ( 1 8 ) .  A s  described 

i n  Appendix B ,  these equa t ions  are a c t u a l l y  block b id i agona l  systems of 

e q u a t i o n s  which might be schemat ica l ly  

e q u a t i o n s  ( 1 4 ) )  by - - 
1 0 0 0 * a *  0 

A21 1+A22 0 0 0 

0 A32 1+A33 0 0 

0 0 A43 l + A 4 ~  0 

0 0 0 0 

. 0 . . . . 0 0 . 0 

0 0 . .  l + A n n  - 0 0 0 - 

Iepresented ( u s i n g  the  f irst  of 

- -  
x1 

x2 

x3 

x4 
. 

'n - -  

= -AT 

- - 
"1 /Ai 

R2 

R 3  

R 4  
. . . 

-R n 

(21 1 

where t h e  s u b s c r i p t s  r e f e r  t o  s p a t i a l  p o s i t i o n  and n is  the t o t a l  number 

of cells  i n  the  computational grid. This system is s o l v e d  d i r e c t l y  and 

q u i t e  s imply  by forward  s u b s t i t u t i o n  marching through the  g r i d .  That is, 

x1 = x, 

A 21 X 1 + ( 1 + A Z 2 ) X 2  = -ATR 2 => ( 1 + A 2 2 ) X 2  = v A T R ~  - A21X1 

A X + ( 1 + A  )X = -ATR => ( 1 + A  ) X  = -ATR - A X (22) 
32 2 33 3 3 33 3 3 32 2 

. 
0 

= - A T R ~  => ( l + A n n ) X n  = -ATR - X Ann-lXn-1 + ( 1 + ~ n n ) ~ n  n  ann-^ n-1 
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But t h i s  se t  of equations is exac t ly  equa t ion  (17 )  ( o r  (19 )  f o r  the second 

s t e p ) .  The re fo re  we s e e  t h a t  the rearrangement from (16) t o  (17) o r  (18) 

t o  (19 )  is, i n  fac t ,  t h e  s o l u t i o n  of t h e  block b id i agona l  system. The 

v a l u e  of X i n  each c e l l  is determined by X i n  t h e  preceeding c e l l  and R. 

What, t hen ,  does t h e  program do? We must r e a l i z e  t h a t  each X i n  (17 )  

i s  a c t u a l l y  a vec tor ,  X 5 ( x l  , X ~ , X ~ , X ~ , X ; ) ~ , .  and each equat ion  i n  (17 )  is 

a c t u a l l y  a 5x5 system of equat ions  of t h e  form 

11 A1 2 0 . .  A1 5 +A 

A21 1+A22 

0 . . 
A5 1 

- -  
1 X 

2 X 

5 X 
- -  

= A T  

- - 
- R l i  n + (Al1x1 + * * *  + A X 

15 5 i - 1  

0 . 
+ ( A 5 1 ~ 1  + 0 . .  +A x ) -R5i 55 5 i-1 

where t h e  number s u b s c r i p t s  now r e f e r  t o  t h e  i n d i v i d u a l  Q's (p,pu,pv,pw,e) 

and i and i-1 refer t o  spat ia l  pos i t i ons .  T h i s  system must be so lved  for 

each  ce l l  i n  t h e  computational grid.  I t  is t h e  c o n s t r u c t i o n  of the ind i -  

v i d u a l  terms i n  t h i s  5x5 sys t em and then  the  s o l u t i o n  of t h i s  sys tem,  f o r  

every  c e l l ,  which is t h e  e s s e n t i a l  f u n c t i o n  of t he  computation. 

D o o l i t t l e '  s Method 

The 5x5 l i n e a r  systems of equat ions  a r e  s o l v e d  here using D o o l i t t l e ' s  

T h i s  method(9) is one of a f a m i l y  of techniques  i n  which the  method. 

+ 
l i n e a r  system Ax = b' is s o l v e d  by f i rs t  f a c t o r i n g  t h e  c o e f f i c i e n t  ma t r ix  

i n t o  lower - t r i angu la r  and uppe r - t r i angu la r  terms, L and U ,  such  tha t  LU = 

+ + +  + -1  + 
A and LUX = b. This l a s t  express ion  is r e a r r a n g e d  t o  g i v e  Ux - L b or L X  
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b = U which can be  so lved  d i r e c t l y  f o r  "x by backward o r  forward subs t i -  

t u t i o n .  The aspect of t h i s  scheme which i s  p a r t i c u l a r  t o  D o o l i t t l e ' s  

method is t h a t  t he  terms on the  diagonal of the  L ma t r ix  are a l l  1. A s  

shown i n  Appendix B ,  the 5x5 system invo lves  unknown q u a n t i t i e s  a t  t h e  

c e l l  i n  q u e s t i o n  and the  known s o l u t i o n  from a ne ighbor ing  cell .  The 

backward or forward s u b s t i t u t i o n  r e q u i r e d  t o  f i n d  t h e  unknowns from the 

known s o l u t i o n  is a r e c u r s i v e  r e l a t i o n  which p r o h i b i t s  v e c t o r i z a t i o n  (on  

c u r r e n t  v e c t o r  p rocesso r s )  i n  t he  d i r e c t i o n  of t he  s u b s t i t u t i o n .  However, 

a v e c t o r  s o l u t i o n  can be e f f e c t e d  by v e c t o r i z i n g  a long  a computational 

l i n e  normal t o  t h e  backward or forward s u b s t i t u t i o n  d i r e c t i o n s .  Such 

v e c t o r i z a t i o n  has been implemented on a v a r i e t y  of vec tor  processors  

(Cray-lS, Cray X-MP, VPS-32) so  t h a t  t o t a l l y  vec to r i zed  r o u t i n e s  f o r  

s o l v i n g  these l i n e a r  systems w i t h  D o o l i t t l e ' s  method are ava i l ab le .  

System Details and Procedure 

I n  o r d e r  t o  proper ly  understand the computational procedure l e t  us  

examine some of the  details  of the  5x5 system. The first equat ion  i n  the 

sys t em is 

x + A X ) ( ( l + A l l ) X 1  + A12x2 + A , 3 ~ 3  + A , 4  = -A.rR1 i 15 5 i 

Wr i t ing  o u t  the  A ' s  and R's (see equat ions  (17) and ( 1 3 ) )  w e  have 

and 
+ - + 

+ 6 H- Rll = 6iFll + tiiFll + 6 G+ + djG, + JkHll 
n 

k l l  J ,  
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where II = 1,5,m = 1 ,5  and t h e  f l u x  v e c t o r s  (F', * * * ,  H+) are f u n c t i o n s  of 

of ( Q ,  ,Q,,Q3,Q4,Q5) = J(p,pu,pv,pw,e) (see equa t ions  ( 2 ) ) .  (27 1 

Recall t h a t  the  f l u x  vec to r s  are  eva lua ted  a t  t h e  c e l l  faces; t h i s  evalua- 

t i o n  r e q u i r e s  t ha t  a spa t i a l  e x t r a p o l a t i o n  of t he  Q's from the  c e l l  cen- 

t e rs  t o  t h e  faces be performed. I n  o r d e r  t o  ma in ta in  the second order 

s p a t i a l  accuracy of t h e  o v e r a l l  computation it is necessa ry  t o  use a 

two-point e x t r a p o l a t i o n  f o r  t he  a ' s  which are used t o  e v a l u a t e  R on t h e  

r i g h t  hand s i d e  of t h e  5x5 system. T h i s  e x t r a p o l a t i o n  (see Ref. 1 )  is 

depending on which of equa t ions  ( 1 4 )  is being cons idered .  A one po in t  

e x t r a p o l a t i o n  is s u f f i c i e n t  on t h e  l e f t  hand s ide .  

The f l u x  v e c t o r s  (F,G,H) r equ i r ed  i n  t h i s  computation a r e  i n  the  form 

of t h e  subvec to r s  (Ff,C',Hk). The d i s c u s s i o n  concern ing  equat ion  (10) 

d e s c r i b e s  q u a l i t a t i v e l y  how the f l u x  v e c t o r s  are s p l i t  i n t o  terms ( o r  

s u b v e c t o r s )  having the e igenvalues  as c o e f f i c i e n t s  and how they are 

f u r t h e r  d iv ided  i n t o  t he  subvec tors  having p o s i t i v e  o r  nega t ive  

e igenva lues  as c o e f f i c i e n t s .  A d e t a i l e d  d e s c r i p t i o n  of t h i s  s p l i t t i n g  

( and  the  g e n e r a l  eigensystem f o r  the  E u l e r  e q u a t i o n s )  is presented  i n  

Appendix C. From the  development of Appendix C t h e  f l u x  v e c t o r s  a r e  

K = X  1 K + X k K 2 + X  4 5 K 
k 1  k 3  
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J 
K2 = 2y 

P 

2 
pw+p c'; 

e+ p+ p c8 k 

J 
K3 = 2Y 

P 

p u-p CEX 

z 

p v-p c'; 

p w-p ck 

e+p-pce 

w i t h  

K = F,G,H when k = ~ , I - I , <  

(C7 2 2 2 2  pc + Y ( ( Y - 1 ) e - p $ ) ,  $ = '2 ( u  + v  +w 1, e k  = kxu+k v+kzw 
Y 2 

x 1  = e k ,  x k  4 = e c + c l v k l ,  A: = BC-clVl, Vk = (k>  ky+ kZ)  l'* ( C 9 )  k 

(-1 => d i v i d e  b y l V k l  

Appendix D describes t h e  cons t ruc t ion  of t h e  f l u x  Jacobian  ma t r i ces  

( A , B , C )  which are r e q u i r e d  i n  t h i s  computation. The elements of these 

~ ~ ~ t r i c e s  are formed by a s t r a i g h t f o r w a r d  d i f f e r e n t i a t i o n  of t n e  s p i i t  

f l u x  v e c t o r s ,  a f te r  t h e  f l u x  v e c t o r s  have been w r i t t e n  as e x p l i c i t  

f u n c t i o n s  of t h e  conserved v a r i a b l e s ,  Q. One d i f f i c u l t y  a s s o c i a t e d  w i t h  

forming t h e  f l u x  Jacob ians  is t h a t  t h e  f l u x  vec to r s  become long ,  unwieldy 

e x p r e s s i o n s  when w r i t t e n  i n  terms of  the  the  conserved v a r i a b l e s .  Another 

t e d i o u s  aspect of the Jacobian computation is p rope r ly  a s s i g n i n g  

c o n t r i b u t i o n s  t o  t h e  p o s i t i v e  and nega t ive  components. This  assignment 

must be done separately for  each ce l l  and each time s t e p .  Because Of t he  

l e n g t h  of t h e  expres s ions  f o r  t h e  f l u x  Jacob ian  elements,  i t  is not 

a p p r o p r i a t e  t o  write them out i n  t h i s  p re sen ta t ion .  

-- 
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The time s t e p  A T  is based on t h e  maximum a l lowab le  time s t e p  i n  each 

c e l l  volume i n  o r d e r  t o  a c c e l e r a t e  convergence f o r  s t e a d y  s t a t e  s o l u t i o n s .  

The time s t e p  is determined a t  each p o i n t  i n  t h e  gr id  by (see Ref. 1 )  

k CFL A k  
wi th  A T  = , k = S , r l , ? ,  9. = 1 , 4 , 5  

max 1 A: 1 
R 

(29  1 

To express t h i s  i n  a more convenient form in t roduce  s h o r t  hand n o t a t i o n  

f o r  t h e  maximum e igenvalues  X = mix I X R  I and s u b s t i t u t e  t h e  express ion  

f o r   AT^ i n t o  AT t o  g ive  

k km 

S i m p l i f y i n g  y i e l d s  

A E A n A ?  
A E A n A  + A5Ar;X + A r l A c X  A T  = CFL 

‘m “m Em 

However, i n  t he  computational gr id  A t  = A n  = Ar; = 1 so  t h a t  we have 

The e igenva lues ,  A:, a r e  (see equation (9)) 

X i  = kxu + k v + kZw = Ok, A:’5 = Bk f clVkl  
Y 

+ Tkl so that 
and t h e  maximum abso lu te  v a l u e  w i l l  always be l B k l  
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T h i s  is t h e  expres s ion  by which t h e  time s t e p  is eva lua ted  i n  t h e  program. 

Return ing  t o  t h e  computational procedure we s e e  t h a t  the 5x5 system of 

e q u a t i o n s  a t  each g r i d  p o i n t  r e q u i r e s  a de te rmina t ion  of the  f l u x  Jacobian  

m a t r i c e s  ( A + , A - , * * . , C - ) ,  t h e  time s t e p  A T  and '  t h e  residuals R". The 

r e s i d u a l s ,  i n  t u r n ,  r e q u i r e  de te rmina t ion  of  t he  two-point ex t r apo la t ed  

Q ' s ,  t h e  f l u x  v e c t o r s  (F+,F-,.=.,H-), and t h e  sum of t h e  d i f f e r e n c e  opera- 

t i o n s  (15~F++o  -*+ t ikH- ) .  With these  q u a n t i t i e s  determined the  system can be 

so1 ved. 

The 

1 .  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

c a l c u l a t i o n s  t h u s  proceed as follows. 

two p o i n t  e x t r a p o l a t e d  Q' s 

e igenva lues  

f l u x  v e c t o r s  

sum of f l u x  v e c t o r  d i f f e r e n c e s  

time s t e p  

f l u x  J a c o b i a n  m a t r i c e s  

c o e f f i c i e n t  ma t r ix  of l e f t  hand s i d e  

lower/upper decomposition of l e f t  hand s i d e  c o e f f i c i e n t  mat r ix  

sum of r i g h t  hand s ide terms 

s o l u t i o n  of t h e  sys t em by forward o r  backward s u b s t i t u t i o n  

upda te  Q ' s  

Suppor t ing  C a l c u l a t i o n s  

The above procedure c o n s t i t u t e s  t h e  e s s e n t i a l  f u n c t i o n  of the computer 

program. A d d i t i o n a l  computations and ope ra t ions  are r e q u i r e d ,  however, t o  

o b t a i n  a complete s o l u t i o n .  These a d d i t i o n a l  s t e p s  i n c l u d e  e s t a b l i s h i n g  

t h e  i n i t i a l  f l ow cond i t ions ,  computing t h e  metrics ( t h a t  is, t h e  dimen- 
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s i o n s )  of each c e l l ,  enforc ing  boundary c o n d i t i o n s ,  determining t h e  v i s -  

cous i n f l u e n c e  and p resen t ing  the  r e s u l t s  i n  a meaningful manner. Brief 

d e s c r i p t i o n s  of some of these steps fo l lows .  

The boundary cond i t ions  a t  the  far  f i e l d  boundary and the  body s u r f a c e  

are en fo rced  us ing  c h a r a c t e r i s t i c  v a r i a b l e s  and phantom p o i n t s  as devel- 

oped i n  Ref. 1 .  I n  a manner s i m i l a r  t o  the  +/-  f l u x  vec tor  s p l i t t i n g  t h i s  

method takes advantage of t h e  n a t u r a l  s i g n a l l i n g  processes  ( informat ion  

p ropaga t ion )  i n  t he  flow t o  more c o r r e c t l y  determine cond i t ions  on the 

e x t e r i o r  and i n t e r i o r  s u r f a c e s  of t h e  computational domain. The eigen- 

v a l u e s  are used t o  determine whether in format ion  propagates i n t o  o r  out  

of t h e  computational domain and a l s o  t o  provide express ions  f o r  t h e  f low 

v a r i a b l e s  a t  t he  boundaries.  Phantom p o i n t s  ( f i c t i t o u s  p o i n t s  which are 

immediately e x t e r i o r  t o  f a r  f i e l d  boundaries and immediately embedded 

i n s i d e  s o l i d  bodies )  f a c i l i t a t e  t h e  computations near t h e  boundaries.  

Through e x t e n s i v e  numerical experimentation t h e  combination of cha rac t e r -  

i s t i c  v a r i a b l e  boundary cond i t ions  and phantom p o i n t s  appears t o  provide  

more eff i e i e n t  and aeewate  evaluztion of the boundary c o ~ d f t i n n  than  

o t h e r  t echn iques  such as e x t r a p o l a t i o n ,  z e r o  p r e s s u r e  g r a d i e n t  and use  of 

t h e  normal momentum equation. 

The on ly  metrics required i n  t h i s  computational s o l u t i o n  t o  t he  Euler  

e q u a t i o n s  are the  area v e c t o r s  of t he  g r i d  c e l l  f a c e s .  These vec to r s  have 

components J ( k x , k  , k  ,) where k 5 c , r l , ~ .  For example, J n z  is t h e  z compo- 

n e n t  of area f o r  an n = cons tan t  f a c e  of a c e l l .  The t o t a l  a r e a  of a c e l l  

face is J I V k l ;  f o r  example, J I V q I  is the t o t a l  area of an  TI = cons tan t  

face. The area vec to r s  are computed as the  c r o s s  product of the d i agona l s  

Y Z  
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of each face. Also computed a r e  t h e  d i r e c t i o n  cos ines  of each component 

of the  area v e c t o r ,  which are (Gx,c ,k ) = ( k x , k  , k  ) / I V k l .  
Y Z  Y Z  

I n i t i a l  c o n d i t i o n s  are p resc r ibed  as freestream cond i t ions  everywhere. 

The f low v a r i a b l e s  are made non-dimensional using p, and c,. A p e r f e c t  

g a s  is assumed. The f r ees t r eam pressure is 

2 which, when made non-dimensional w i t h  p,c, , i s  

1 
Y P, = - (31 a) 

The freestream energy ( i n t e r n a l ,  cVTm, p l u s  k i n e t i c ,  4 <) per u n i t  volume 

1 + 1 e, = - y-1 P m  7 Pmqm 

2 2 2 2 where q, = u, + v, + w, 

* g ives  = q, IC, 
2 Using p,cm2 t o  non-dimensionalize and r ecogn iz ing  Ma 

1 1 1 2  e ,=  - - + -  (Y-1) Y 2 Mm 
(31 b )  

Numeri cal  P r o p e r t i e s  

The scheme as descr ibed  is i m p l i c i t ,  upwind and f i n i t e  volume. F i r s t  

o r d e r  d i f f e r e n c i n g  is used i n  the  l e f t -hand  s i d e  ma t r ix  ope ra to r  which 
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i m p l i c i t l y  o p e r a t e s  on t h e  dependent v a r i a b l e  d i f f e r e n c e  AQ". T h i s  y i e l d s  

second-order accuracy i n  space. For  cons is tency ,  secondiorder  differ-  

enc ing  is  used i n  the  r e s i d u a l s  on t h e  right-hand s i d e  such  t h a t  t h e  

o v e r a l l  scheme is second-order accu ra t e  i n  space. 

Because only s t eady  s t a t e  s o l u t i o n s  a r e  of concern here l o c a l  time 

s t e p p i n g  and f i r s t - o r d e r  temporal d i f f e r e n c e s  a r e  used. 

The upwind c h a r a c t e r  of the  s o l u t i o n  scheme prec ludes  t h e  n e c e s s i t y  of 

adding  a r t i f i c i a l  d i s s i p a t i o n  t o  damp o s c i l l a t i o n s  as is commonly requi red  

i n  c e n t r a l  d i f f e r e n c e  schemes. 

Ana lys i s  of a s c a l a r  equat ion  and a sys tem of equa t ions (14)  shows t h a t  

the  p r e s e n t  scheme is cond i t iona l ly  s table .  The p r a c t i c a l  l i m i t  f o r  CFL 

number is approximately 20, a l though under c e r t a i n  flow cond i t ions  much 

higher CFL numbers are poss ib le .  
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I V .  Viscous C a l c u l a t i o n s  

Viscous e f f e c t s  a r e  determined through t h e  use of an i n v e r s e  i n t e g r a l  

method f o r  computation of t u r b u l e n t  compressible boundary l a y e r s .  The method i s  

referred t o  as i n t e g r a l  i n  t h a t  t h e  fundamental basis of t he  c a l c u l a t i o n  is in- 

t e g r a t i o n  of the  momentum and k i n e t i c  energy equat ions .  Use of a p r e s c r i b e d  

d isp lacement  t h i c k n e s s  d i s t r i b u t i o n  i n  place of t h e  more usua l  p r e s c r i b e d  pres- 

sure d i s t r i b u t i o n  as part of the input t o  the  s o l u t i o n  g i v e s  rise t o  the i n v e r s e  

n a t u r e  of t h i s  method. The in f luence  of t he  boundary l a y e r s  is imposed upon the  

e x t e r n a l  i n v i s c i d  flow by a s u r f a c e  source  model i n  which t h e  v e l o c i t y  normal t o  

s o l i d  s u r f a c e s  induced by the  viscous displacement t h i c k n e s s  acts  as t h e  eff ec- 

t i v e  s t r e n g t h  of an i n v i s c i d  sou rce  d i s t r i b u t i o n  on t h e  s o l i d  s u r f a c e .  I n  the 

p r e s e n t  a p p l i c a t i o n  the  v i scous  c a l c u l a t i o n s  are a l o n g  two-dimensional s t r i p s ;  

no e x p l i c i t  spanwise c a l c u l a t i o n s  are performed. A f u l l  d e s c r i p t i o n  of the  pro- 

cedure  appears i n  r e f e r e n c e s  ( ? O , ? ?  ,121. 

C e n t r a l  t o  t h i s  scheme is the  r e p r e s e n t a t i o n  of t he  t u r b u l e n t  boundary 

l a y e r  by an  a n a l y t i c a l  expres s ion  f o r  t h e  v e l o c i t y  p r o f i l e .  Th i s  a n a l y t i c a l  

e x p r e s s i o n ,  developed from curve fits t o  experimental  data, is a p p l i c a b l e  t o  

bo th  attached and m i l d l y  separated compressible t u r b u l e n t  boundary l a y e r s .  From 

t h i s  e x p r e s s i o n  t h e  va r ious  boundary l a y e r  l e n g t h  scales,  t he  s k i n  f r i c t i o n  and 

t h e  d i s s i p a t i o n  can be  obta ined .  The v e l o c i t y  p r o f i l e  used here is a c t u a l l y  f o r  

t he  e q u i v a l e n t  incompress ib le  viscous flow. The compress ib le  f low p r o p e r t i e s  

are determined from c o r r e l a t i o n s  of t h e  three compress ib le  shape  f a c t o r s  and 

s k i n  f r i c t i o n  w i t h  t he  incompressible shape f a c t o r  and boundary layer edge Mach 

number. These c o r r e l a t i o n s  are a l s o  based on curve fits t o  exper imenta l  data. 
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The basic governing equat ions  f o r  t h e  p a r t i c u l a r  i n v e r s e  i n t e g r a l  method 

used here are those  f o r  momentum and mean-flow k i n e t i c  energy. With s u i t a b l e  

algebraic manipula t ions ,  these two e q u a t i o n s  become a coupled pa i r  of f irst  or -  

der o r d i n a r y  d i f f e r e n t i a l  equations f o r  ( t h e  incompress ib le  shape f a c t o r )  and 

M e  ( t h e  edge Mach number). The equat ions  c o n t a i n  t h e  f o u r  compressible l e n g t h  

scales ,  a long  w i t h  Me, cf ( t h e  skin f r i c t i o n  c o e f f i c i e n t ) ,  and D ( t h e  d i s s i p a -  

t i o n  i n t e g r a l ) .  With t h e  a n a l y t i c  v e l o c i t y  p r o f i l e ,  the  c o r r e l a t i o n s  and the  

d isp lacement  t h i c k n e s s  d i s t r i b u t i o n  (from t h e  previous  v iscous  s o l u t i o n )  known 

t h e  p a i r  o f  d i f f e r e n t i a l  equat ions  can be  so lved  f o r  the  unknowns and Me. In 

o r d e r  t o  e v a l u a t e  t he  d i s s i p a t i o n  i n t e g r a l  the Cebeci-Smith two-layer eddy v i s -  

c o s i t y  t u r b u l e n c e  model is used f o r  T while t he  v e l o c i t y  p r o f i l e  p rov ides  

au/ay. The a c t u a l  s o l u t i o n  of the system is ob ta ined  through a f o u r t h  o r d e r ,  

f o u r  s t a g e  Runge-Kutta rou t ine .  

The s o l u t i o n  procedure f o r  a given v i scous  c a l c u l a t i o n  begins  with i n p u t  of 

a, ii, Re, ( t h e  equ iva len t  incompressible shape f a c t o r ,  f r i c t i o n  v e l o c i t y  and 

Reynolds number based on 5, t h e  incompress ib le  momentum th i ckness )  t o  t h e  main 

v i s c o u s  s u b r o u t i n e  (SOURCE). These i n p u t  q u a n t i t i e s  come from the  previous  v i s -  

cous cyc le .  Also i n p u t  are the conserved dependent v a r i a b l e s  ( p ,  pu, pv, p w ,  

e ) .  A sequence  of s t e p s  fo l low which lead t o  a new o r  updated v e l o c i t y  p r o f i l e .  

Th i s  p r o f i l e  is t h e n  used i n  the s o l u t i o n  of the coupled pair of d i f f e r e n t i a l  

e q u a t i o n s  f o r  Also r equ i r ed  i n  t h e  s o l u t i o n  f o r  nand Me is  6 ,  the  

d isp lacement  t h i c k n e s s  d i s t r i b u t i o n .  The displacement th i ckness  f o r  t he  c u r r e n t  

v i scous  c a l c u l a t i o n  is obtained by m u l t i p l y i n g  t h e  t h i c k n e s s  from the  p rev ious  

c a l c u l a t i o n  by t he  r a t i o  of t h e  previous edge v e l o c i t y  t o  t h e  previous i n v i s c i d  

s u r f a c e  v e l o c i t y  magnitude. (On the  very first v iscous  pass, the S o l u t i o n  is 

s ta r ted  by s p e c i f y i n g  t h e  l o c a t i o n  and displacement th i ckness  a t  the l o c a t i o n s  

and Me. 



of boundary l a y e r  t r a n s i t i o n  and computing a f l a t  p la te  t u r b u l e n t  boundary 

l a y e r . )  and Me a re  de- 

te rmined .  The new va lues  of H  ̂ and Me d i s t r i b u t e d  along t h e  body can then  be 

used w i t h  the  c o r r e l a t i o n s  t o  ob ta in  d i s t r i b u t i o n s  of a l l  of  t h e  a c t u a l  compres- 

s i b l e  p r o p e r t i e s  of the  boundary layer .  

With t h e  6* d i s t r i b u t i o n  a v a i l a b l e  updated va lues  of 

Among the  compressible p r o p e r t i e s  determined i n  the above procedure  i s  t h e  

mass f l u x  defect,  peue6 , c r e a t e d  by t he  boundary l a y e r .  The use fu lness  of t h i s  

p r o p e r t y  is apparent  if we i n t e g r a t e  t he  d i f f e r e n t i a l  c o n t i n u i t y  equa t ion ;  t he  

r e s u l t  is 

* 

where (pv ln  is t h e  mass f l u x  per unit  area normal t o  t h e  s u r f a c e  induced by t h e  

boundary layer  and x is the  streamwise coord ina te .  With r e s p e c t  t o  t h e  e x t e r n a l  

i n v i s c i d  f low,  t he  in f luence  of the boundary layer is t o  displace the  stream- 

l i n e s  away from the body. This displacement is equ iva len t  t o  superimposing a 

mass f l u x ,  which is equal  t o  t he  mass f l u x  d e f e c t ,  normal t o  the  body su r face .  

The q u a n t i t y  ( ~ v ) ~  is precisely t h i s  normal mass f l u x .  Thus t h e  d i s t r i b u t i o n  of 

peue6 provides  t h e  means t o  determine t h e  v iscous  i n f l u e n c e  on the  i n v i s c i d  

f low,  o r ,  i n  o t h e r  words, t o  determine t h e  v i scous - inv i sc id  i n t e r a c t i o n .  The 

normal mass f l u x  app l i ed  i n  t h e  s o l i d  wall boundary c o n d i t i o n s  may be i n t e r -  

p r e t e d  as a s u r f a c e  source  s t r eng th .  An a l t e r n a t e  i n t e r p r e t a t i o n  of (pv), is 

t h a t  i t  r e p r e s e n t s  t he  p o r o s i t y  of  the su r face .  The boundary c o n d i t i o n  r o u t i n e  

i n  t h i s  program inc ludes  (pv), i n  t h e  characterist ic v a r i a b l e  s o l i d  wall compu- 

t a t i o n s .  

* 
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V .  Program Details 

Subrout  i ne3 

The s o l u t i o n  procedure is d i r e c t e d  by a s i n g l e  c a l l i n g  subrou t ine ,  STEP. 

Some computat ions are performed i n  STEP but  i ts  main purpose is t o  ca l l  the  

proper  sequence of sub rou t ines  t o  perform t h e  r e q u i s i t e  c a l c u l a t i o n s .  Perhaps 

the  b e s t  way t o  b r i e f l y  descr ibe each subrou t ine  is t o  put  each i n t o  the  contex t  

of i ts sequence and r o l e  i n  t he  computational scheme. The fo l lowing  tab le  de- 

t a i l s ,  i n  ch rono log ica l  order ( i n  t h e  computer program), each subrou t ine  and its 

f u n c t i o n ,  r e l e v a n t  equat ion  or r e fe rence  and primary ou tpu t  va r i ab le s .  

s u b r o u t i n e  f u n c t i o n  

I C  i n i t i a l  cond i t ions  

e q ua t i on 

31 P ,Pu,Pv,Pw,e 

o u t  put v a r i  ab1 es 

METRIC ce l l  face area vec to r s  32 

BC boundary cond i t ions  42-47 i n  Ref. 1 p,pu,pv,pw,e 

DELQ 2 p o i n t  e x t r a p o l a t e d  Q's 28 

FLUX e igenvalues  

FLUX f l u x  v e c t o r s  

9 

C16, C17 F+,G*,H*, a t  
s t e p  n 

DELQ residual=sum of f l u x  vec tor  13  
d i f f e r e n c e s  

Re", R = l  , . . . ,5 

EX GENV time s t e p  30 AK  

FJMAT e igenvalues  9 

F JMAT f 1 ux J acobi an  matr i ces Appendix D A* ,B*, C* 

STEP c o e f f i c i e n t  mat r ix  of 5x5 17,  19 
sys tem,  

AEQLU lower/upper decomposition of l i n e a r  algeb,ra 
c o e f f i c i e n t  matrix of l e f t  t e x t  
hand s i d e  
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DOOP,  DOOM r i g h t  hand s ide of  5x5 system 

DOOP,  DOOM forwardlbackward s u b s t i t u t i o n  
s o l u t i o n  of 5x5 system 

STEP update Q's 

BC boundary cond i t ions  

SOURCE v i  scous  c a l c u l a t i o n  

PVAR p r i n t  r e s u l t s  

17, 19 -R"+ ( A ~  x 1 +A, 2x2+ . . .+A15x5 
l i n e a r  a l g e b r a  AQn 
t e x t  

42-47 i n  Ref. 1 p,pu,pv,pw,e 

Pvn S e c t i o n  IV 

Vari ab1 es 

As would b e  expected i n  a program designed t o  s o l v e  a complex system of  

e q u a t i o n s ,  there are a l a r g e  number o f  v a r i a b l e s .  The names used f o r  t h e  va r i -  

ables,  i n  most cases, a r e  r e p r e s e n t a t i v e  of t h e  v a r i a b l e s '  phys ica l  o r  mathe- 

matical meanings. Brief d e f i n i t i o n s  of the  more impor tan t  q u a n t i t i e s  are pre- 

s e n t  ed her e. 

The f o l l o w i n g  v a r i a b l e s  appear i n  near ly  a l l  sub rou t ines .  

I , J , K  = S , n , c ;  i n d i c e s  f o r  g r i d  poin ts  

N I , N J , N K  = number of ( I , J , K )  l i n e s  

R , R U , R V , R W , E , P  = p,pu,pv,pw,e,p i n  Car t e s i an  frame, ( x , y , z )  

X,Y,Z = g r i d  p o i n t  coord ina te s  i n  Car tes ian  frame, ( x , y , z )  

AIX,AIY,AIZ = C a r t e s i a n  components of the  area v e c t o r  of an  I cons tan t  ce l l  face 

AJX,AJY,AJZ = C a r t e s i a n  components of t h e  area v e c t o r  of a J cons tan t  ce l l  face 

AKX,AKY,AKZ = C a r t e s i a n  components of the  area v e c t o r  of a K cons tan t  c e l l  face 

SADAI,SADAJ,SADAK = magnitude of the area v e c t o r s  f o r  I,J, o r  K cons tan t  c e l l  
faces 

The fo l lowing  v a r i a b l e s  appear i n  only some of the subrou t ines :  

B ( L , M , N , I , J , K )  = f l u x  Jacobian  mat r ices ;  L = 1 , 6  and refers t o  A + ,  ..., C-; M=1,5 
and r e f e r s  t o  the f l u x  vector  component; N = 1  ,5 and r e f e r s  t o  
t h e  dependent conserved v a r i a b l e ;  I , J , K  r e f e r  t o  g r i d  l o c a t i o n  
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D(L,M,N,I,J,K) = c o e f f i c i e n t  mat r ix  on the l e f t  hand s i d e  of t he  5x5 systems; 
L=1,2 and refers t o  the  forward o r  backward passes ;  M=1,5 and 
N=1,5 refer t o  t h e  l o c a t i o n  w i t h i n  t h e  matr ix;  I,J,K refer 
t o  g r i d  l o c a t i o n  

DR,DRU,DRV,DRW,DE 5 r i g h t  hand s i d e  of two p a s s  a lgor i thm (R,X1); AQn af te r  two 
pass  a lgori thm 

DT = time s t e p  

In DELQ, 

RR,RUR, ..., RWL,EL = r i g h t  and l e f t ,  two p o i n t ,  e x t r a p o l a t e d  dependent v a r i a b l e s  

XR,XRU,XRV,XRW,XE = f l u x  vectors  

In DOOP and DOOM, 

T = sum of t r a n s p o r t  terms on r i g h t  hand s i d e  of t h e  5x5 systems 

Z = t o t a l  r i g h t  hand s i d e  of t h e  5x5 systems, i n i t i a l l y ;  s o l u t i o n  t o  5x5 system, 
f i n a l l y  

Y = i n t e r m e d i a t e  v a r i a b l e s  in s o l u t i o n  of 5x5 system 

In FJMAT, 

EV1 ,EV4,EV5 = e igenvalues  

CGl,CC2,CG3 =: switches to ass,gn terms t.0 a p p r o p r i a t e  ( 2 )  flux Jacc-izns 

AXT,AYT,AZT - k x , z  

In FLUX, 

- 
Y' = 

EVlB, ..., EV5L = eigenvalues  pred ic ted  on ce l l  faces us ing  r i g h t  and l e f t  e x t r a -  
p o l a t e d  dependent v a r i a b l e s  

XR,XRU,XRV,XRW,XE = f l u x  vec tors  

I n  EIGENV, 

CONU,CONV,CONW = ek 

EI,EJ,EK + C l V k l  

DT = time s t e p  
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I n p u t  parameters ( i n  o r d e r  of read), 

CFL = CFL number 

FSMACH = freestream Mach number 

ALPHA,BETA,PHI = r o l l ,  p i t c h  ( ang le  of a t tack)  and yaw ang les  

NB 5 number of p r i n t o u t s  

NT = number of computational cycles p e r  p r i n t o u t  

NV = number of computational cyc le s  p e r  ca l l  t o  v iscous  c a l c u l a t i o n s  

ITL, ITU,XLE = I va lues  at lower and upper t r a i l i n g  edges and a t  l e a d i n g  edge 

KTIP = K va lue  a t  wing t i p  

X1 = array s t o r i n g  the  computational g r i d  coord ina te s  

IFREQ = f requency  of ca l l s  t o  EIGENV, FJMAT and AEQLU ( n o t  read but  set i n  M A I N )  

N I , N J , N K  = g r i d  s i z e  ( n o t  read but  se t  i n  PARAMETER s t a t emen t s )  

Output ,  every  5 c y c l e s  

NCYC = cycle number 
RTMAX 
RTRMS 
ETMAX 
ETRMS 
xL.2 f 

TCL = 
TCD = 

= maximum DR 
= rms v a l u e  of DR 
= maximum DE 
= rms v a l u e  of DE 
sum of s q u a r e s  of DR,..,,uL, nr 
l i f t  c o e f f i c i e n t  (wing) 
d rag  c o e f f i c i e n t  ( w i n g )  

NSUP = number of supe r son ic -po in t s  

Output ,  every NT c y c l e s  

ZLOC = spanwise  p o s i t i o n  
S = chordwise p o s i t i o n  
CP2 = s u r f a c e  p r e s s u r e  coePPic ien t  
CL = s e c t i o n a l  l i f t  c o e f f i c i e n t  
CD = s e c t i o n a l  d rag  c o e f f i c i e n t  
TCL = wing l i f t  c o e f f i c i e n t  
TCD = wing d r a g  c o e f f i c i e n t  
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Execution sequence 

M A I N  

c a l l  I C  

read i n p u t  

c a l l  METRIC 

c a l l  BC 

c a l l  PGEOM 

do 3 L-1 ,NB 

do 2 M = l  .NT 

c a l l  STEP 
c a l l  DELQ 

c a l l  FLUX, (NK-1 )* (NJ-1  )+ (NK-1)"  ( N I - 1 )  + ( N J - 1  )*  (NI -1 )  times 

c a l l  EIGENV, NB*NT/IFREQ times 

c a l l  FJMAT, 6*NB*NT/IFREQ times 

c a l l  AEQLU, 2*NB*NT/IFREQ times 

c a l l  DOOP 

c a l l  DOOM 

c a l l  BC 

c a l l  SOURCE NB*NT/NV times 

c a l l  INVBL 

c a l l  CORREL 

c a l l  L I N I N T  

c a l l  RUNGE 

2 continue 

c a l l  PVAR 

3 continue 
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V I .  App l i ca t ions  

T h i s  code has been used t o  compute t r a n s o n i c  flow p a s t  a v a r i e t y  of 

two-dimensional and three-dimensional bodies.  To demonstrate t h e  appl ica-  

t i o n  of the  program, r e s u l t s  from computations of a r e p r e s e n t a t i v e  wide  

body subson ic  j e t  t r a n s p o r t  w i l l  be presented .  

Geometry and G r i d  

The conf igu ra t ion  i n  question is a complex wing/ fuse lage  combination 

des igna ted  f o r  t h i s  work as t h e  P a t h f i n d e r  geometry. The wing is a h igh  

a s p e c t  r a t i o ,  compound sweep surface wi th  s u p e r c r i t i c a l  s e c t i o n s ,  span 

wise washout and p o s i t i v e  d ihedra l .  Th i s  wing is mid-mounted on a s i m p l e  

axisymmetric f u s e l a g e  which has a s l i g h t l y  b lun ted  og ive  nose  and a b l u n t  

base without b o a t t a i l i n g .  For the computational geometry t h e r e  is no 

wing r o o t  f i l l e t  or f a i r i n g .  A geometry very similar t o  t h i s  has under- 

gone wind t u n n e l  t e s t i n g  a t  NASA Langley and some r e s u l t s  from those  

experiments w i l l  be used f o r  comparison. 

To g e n e r a t e  the computational g r i d  the  program FL059, authored by T. 

Jameson, (13)  was applied.  This code i s  a f u l l  Eu le r  equa t ion  s o l v e r  bu t  

a l s o  i n c l u d e s  a g r i d  genera t ion  package f o r  wing/body/ ta i l  geometries,  

which has been s l i g h t l y  modified by D r .  J .  Luckring of NASA Langley and 

f u r t h e r  modified during t h e  present  work. F i g u r e s  1 through 6 show por- 

t i o n s  of t h e  g r i d  produced by FL059 f o r  t he  P a t h f i n d e r  conf igura t ion .  

T h i s  is a C-H g r i d  w i t h  97 I l i n e s  and 17 each of  t he  J and K l i n e s .  The 

lower and upper wing t r a i l i n g  edges are a t  I = 19 and 79 respectively; t h e  

l e a d i n g  edge is a t  I = 49. The wing t i p  is a t  K = 1 1 .  
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The K = 1 s u r f a c e  is t h e  plane of symmetry ( z  = 0) above and below 

t h e  body and l i e s  on t h e  s u r f a c e  of t h e  f u s e l a g e ,  c u t t i n g  through the  wing 

a t  t h e  wing/fuselage junc t ion .  F i g u r e  1 shows the  K = 1 s u r f a c e  (viewed 

a l o n g  t h e  z a x i s )  i n  t h e  immediate v i c i n i t y  of  t h e  fuse l age .  The b l u n t  

base, wing r o o t  p r o f i l e  and f u s e l a g e  nose shape are clear ly  ev iden t .  An 

o b l i q u e  view of t h e  K = 1 s u r f a c e  nea r  the f u s e l a g e  appears i n  Figure 2 ;  

prominent i n  t h i s  f i g u r e  is t h e  r a p i d  t r a n s i t i o n  a t  t h e  f u s e l a g e  base of 

l i n e s  on the  s u r f a c e  t o  l i n e s  on the mid p lane .  On F igure  3 an  en large-  

ment of  t h e  wing r o o t  area (K = 1 ,  view along z axis)  is presented .  The 

s u p e r c r i t i c a l  s e c t i o n  is c l e a r .  Two less  d e s i r a b l e  g r i d  p r o p e r t i e s  are 

a l s o  apparent .  There is a s l i g h t  i r r e g u l a r i t y  i n  t h e  g r i d  l i n e s  immedi- 

a t e ly  downstream, of the t r a i l i n g  edge. More impor tan t ly ,  the  ce l l s  on 

t h e  s u r f a c e  (upper and lower) on t h e  a f t  half  of t he  a i r f o i l  are somewhat 

l a r g e ;  t h i s  may adverse ly  in f luence  computations on t h e  compression (down- 

stream f a c i n g )  s u r f a c e s  of t h e  wing. 

Three views of the J = 1 s u r f a c e  are presented  i n  F igu res  4 ,  5 and 6. 

The e n t i r e  J = 1 s u r f a c e  appears  i n  an o b l i q u e  view i n  F igu re  4 where t h e  

l e f t - m o s t  l i n e  runs  along the wing l e a d i n g  edge. The g r i d  ex tends  ap- 

p rox ima te ly  one and one-half semispans beyond the  wing t i p  i n  t h e  z direc- 

t i o n  and approximately one semispan downstream of t he  f u s e l a g e  base. The 

a b r u p t  bend i n  the  bottom most g r i d  l i n e  is a t  t h e  f u s e l a g e  base. I n  

F i g u r e  5 t h e  wing is viewed along t h e  y axis. Here the s l i g h t  char,ge i n  

l e a d i n g  edge sweep is apparent.  Another ob l ique  view of  t he  wing, b u t  

somewhat en la rged ,  is presented  i n  F i g u r e  6. The geometry of t h e  t r a i l i n g  

edge  can be more c l e a r l y  d iscerned  i n  t h i s  view. 
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The o u t e r  boundaries of t h e  g r i d  a r e  r e l a t i v e l y  nea r  t h e  body, being 

roughly  one semispan i n  each d i r e c t i o n  from t h e  body. (The e x t e n t  i n  t h e  

y d i r e c t i o n  and ahead of t h e  body are no t  shown but  are  about one and 

one-half semispans each.) Numerical experiments have no t  shown any obvi- 

ous  adve r se  i n f l u e n c e  r e s u l t i n g  from i n s u f f i c i e n t  d i s t a n c e  t o  t he  o u t e r  

boundar ies  a l though t h i s  spacing and its ef fec ts  may need t o  be  f u r t h e r  

explored .  

C a l c u l a t i o n s  

Computations were performed over a range  of v a l u e s  f o r  the  va r ious  

parameters which can be se t  i n  t he  code, i n  p a r t i c u l a r  IFREQ, CFL,  N V ,  

NB*NT, DST, XTOP and XBOT. The best combination t o  minimize machine t ime,  

maximize convergence r a t e  and s t i l l  o b t a i n  r e a s o n a b l e  output  involved 

running  f o r  100 t o  300 cycles  (NB*NT) w i t h  IFREQ=9999, CFL=15 and NV 

between 10 and 20. T h i s  means only one ca l l  is made t o  FJMAT, AEQLU and 

EIGENV and from f i v e  t o  30 calls t o  t h e  v i scous  r o u t i n e s  (when they are 

used ) .  For t h i s  combination the r e s i d u a l s  are reduced by a t  least  t h r e e  

o r d e r s  of magnitude and t h e  l i f t  is wi th in  f i v e  t o  t e n  percent  of i ts  

asymptot ic  value.  A l l  r e s u l t s  presented  here a r e  f o r  parameters i n  these 

ranges .  The examples t o  be presented here are f o r  two cases with t h e  

6 (21 ,  M, = 0.70, a = 2 O ,  Re, = 5.3*10 . These cases cor respond t o  wind 
C 

t unne l  experiments conducted at NASA Langley Research Center.  
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F i g u r e  7 a  p r e s e n t s  computed p r e s s u r e  d i s t r i b u t i o n s  f o r  case ( 1 )  a t  

t h e  45% span  l o c a t i o n  a long  w i t h  an experimental  d i s t r i b u t i o n  a t  t h e  43.2% 

span  l o c a t i o n  pos i t i on .  The two curves on t h i s  f i g u r e  are f o r  an i n v i s c i d  

r u n  of  100 c y c l e s  and a v i scous  run of  100 cycles w i t h  f i v e  ca l l s  t o  the 

v i s c o u s  r o u t i n e s .  For t he  v iscous  c a l c u l a t i o n s  the t u r b u l e n t  boundary 

l a y e r  was begun a t  x/c va lues  of 0.05 and 0.2 on the  lower and upper 

surfaces, r e s p e c t i v e l y ,  whi le  t h e  i n i t i a l  displacement t h i c k n e s s  (6* /c>  was 

0.0010 and 0.0012, lower and upper. On F i g u r e  7a ,  the lower surface 

agreement is q u i t e  good up t o  x /c  = 0.8; t h e  d e v i a t i o n  downstream of that  

p o i n t  is expected i n  view of t h e  r e l a t i v e l y  c o a r s e  g r i d .  On the  upper 

surface, t h e  l e a d i n g  edge s u c t i o n  peak is p rope r ly  computed and the  basic 

character of the recompression i s  r ep resen ted  by the c a l c u l a t i o n s .  The 

shock, however, is no t  a c c u r a t e l y  captured. Th i s  may be a consequence of 

t he  c o a r s e  g r id .  

D i s t r i b u t i o n s  a t  other spanwise l o c a t i o n s  f o r  case ( 1 )  appear i n  

r igurie 7b-r”. I ne agreement between experiment ana c a i c u i a t i o n  ae t e r io -  

r a t e s  as t h e  r o o t  and t i p  are approached. The n a t u r e  of t he  d i s t r i b u t i o n s  

outboard  of the  45% l o c a t i o n  sugges t s  t ha t  the wing t w i s t  is not  c o r r e c t l y  

modelled. There is p r o g r e s s i v e l y  t o o  much upper s u r f a c e  expansion and t o o  

l i t t l e  lower surface expansion as the t i p  is approached which i n d i c a t e  

t h a t  these s e c t i o n s  are  a t  t o o  h i g h  an ang le  of attack. A t  t he  r o o t  there 

is  i n s u f f i c i e n t  upper s u r f a c e  expansion i n d i c a t i n g  t h a t  the  angle  of 

at tack is n o t  l a r g e  enough. I t  is most l i k e l y  tha t  a n g l e  of attack is not  

t h e  o n l y  problem at  the  r o o t .  The i n t e r a c t i o n  between the  f u s e l a g e  and 

wing is probably no t  being adequate ly  computed a l s o .  

%-I, - m. 
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As an example of the  in f luence  of ang le  of a t tack,  F igu re  8 is pre- 

s e n t e d  i n  which v iscous  runs  (same parameter va lues  as i n  F igu re  7 )  f o r  

th ree  ang le s  of at tack are compared. I t  should  f irst  be observed t h a t  the  

exper imenta l  ang le  of attack is 2 O  b u t  t h a t  t h e  r e s u l t s  i n  F igu re  7 are 

a c t u a l l y  a t  2 . 5 O  as t h i s  g i v e s  reasonably  good agreement a t  t h e  45% span 

p o s i t i o n .  F igu re  8 shows computations a t  2 O ,  2 . 3 O  and 2 . 6 O .  A t  t h e  

outboard  s e c t i o n s ,  t he  t i p  i n  p a r t i c u l a r ,  t h e  c a l c u l a t i o n s  more c l o s e l y  

match the  experimental  resu l t s  as  t h e  angle  of attack is decreased. The 

t r e n d  is reve r sed  a t  t h e  inboard s e c t i o n s .  These r e s u l t s  f u r t h e r  suppor t  

t h e  idea t h a t  t h e  wing t w i s t  is no t  c o r r e c t .  

R e s u l t s  f o r  ca se  (2 )  appear i n  F igu re  9 ,  where t h e  computations are 

v i s c o u s  and were run f o r  250 cyc les  wi th  NV=lO. The agreement here is 

good except  a t  the most inboard s e c t i o n .  A spanwise v a r i a t i o n  which is 

probably  due t o  i n c o r r e c t  twist is st i l l  d e t e c t a b l e  b u t ,  o v e r a l l ,  the 

c a l c u l a t i o n s  q u i t e  s a t i s f a c t o r i l y  p r e d i c t  the  flow. 

c 0 I? cl ud i n g F. emar ks 

Development and a p p l i c a t i o n  of a code t o  a c c u r a t e l y  compute 

three-dimensional,  t r a n s o n i c  f l o w  wi th  v i scous  effects is n o t  a s imple  

matter as t h e  preceding d i scuss ions  hopefu l ly  show. The emphasis during 

t h i s  research has been t o  concen t r a t e  on re f inement  of t h e  numerical 

scheme w i t h  p a r t i c u l a r  a t t e n t i o n  p a i d  t o  improving t h e  computational speed 

and e l i m i n a t i n g  numerical o s c i l l a t i o n s .  Both of  these g o a l s  have been 

c l o s e l y  approached, i f  no t  f u l l y  met. However, there is c l e a r l y  much t h a t  

s t i l l  needs t o  be addressed. An improved and f i n e r  mesh is obviously 

necessa ry  t o  o b t a i n  a c c u r a t e  f l o w  p r e d i c t i o n s .  The g r i d  s i z e  chosen here 

was d ic ta ted  p r i m a r i l y  by economy rather than accuracy. A f u l l y  three- 
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dimens iona l  v i scous  c a l c u l a t i o n  scheme should  be implemented i n  o rde r  t o  

a c c u r a t e l y  compute r o o t  and t i p  flows. Mul t i -gr id  and block schemes and 

a d a p t i v e  g r i d s  should  also be considered. 

Although many improvements can be made, the  code as described here is 

an e f f i c i e n t  and robus t  Euler  equat ion  s o l v e r ,  r e l a t i v e l y  easy t o  use and 

w i t h  r e a s o n a b l e  accuracy w i t h  a coa r se  mesh. When coupled w i t h  a well- 

developed computational g r i d  t h i s  program, i n  its p r e s e n t  form, should 

prove  t o  be a u s e f u l  t o o l  f o r  eng inee r ing  c a l c u l a t i o n s  of three-dimen- 

s i o n a l ,  h igh Reynolds number, t r a n s o n i c  flow. 
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Appendix A .  Coordinate Transformation 

The s t e p s  r e q u i r e d  t o  transform the E u l e r  equa t ions  from C a r t e s i a n  t o  

c u r v i l i n e a r  coord ina te s  are described h e r e ( * ) .  The l o g i c  behind t h i s  proce- 

d u r e  may be more c l e a r  i f  i t  i s  r e a l i z e d  that  t h e  main purpose of t h i s  

t r a n s f o r m a t i o n  is t o  replace a l l  Cartesian d e r i v a t i v e s  w i t h  c u r v i l i n e a r  

d e r i v a t i v e s  . 
The Eu le r  equa t ions  i n  Car t e s i an  coord ina te s  a r e  i n  t h e  form 

q t  + f, + gy + h, = 0 ( A I  1 

Consider ( 5 ,  TI, S )  = f u n c t i o n  (x,  y ,  z, t ) ,  

( x ,  y, z )  = f u n c t i o n  ( 5 ,  TI, 5 ,  T) and t = T. 

C a r t e s i a n  d e r i v a t i v e s  a r e  then 

a a a a a 
+ S t a r  a t  ' t Z ' % , X +  TItz -li 

, e t c .  a a a a 
+ nx-35 + cx,, = T  - +sxx a 

ax x a T  
- 

and c u r v i l i n e a r  d e r i v a t i v e s  a r e  

a + z  - a a a a 
- =  ar t T T c + x g z + Y T 5  T a z  

S u b s t i t u t e  (A3) i n t o  ( A l ) ,  r e a l i z i n g  t = T f f ( x ,  Y ,  2) g i v e s  
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A t  t h i s  p o i n t  we have c u r v i l i n e a r  d e r i v a t i v e s  of  t h e  dependent var i -  

ables and f l u x  terms (q ,  f ,  g, h)  b u t  we st i l l  have C a r t e s i a n  d e r i v a t i v e s  of 

t h e  independent v a r i a b l e s  (5, n, 5 ,  T ) .  We must, t h e r e f o r e ,  f i n d  expres- 

s i o n s  f o r  the C a r t e s i a n  d e r i v a t i v e s  i n  terms of c u r v i l i n e a r  d e r i v a t i v e s .  To 

do t h i s  f i rs t  write equat ion ( 4 )  i n  m a t r i x  form 

[ c u r v  d e r i v ]  = [J]  [car t  deriv] (A6 1 

and r e a l i z e  tha t  t h e  determinant  of the c o e f f i c i e n t  mat r ix ,  I[JlI is the  

m a t r i x  Jacobian,  here denoted simply as J ,  

J = x ( y  z - znyg)  y ( X  z - z x ) + z ( X  y - y,xl;) 5 n c  5 r l s  n 5  5 n s  

M u l t i p l y i n g  ( A 6 )  by CJ3-l g i v e s  t h e  desired r e l a t i o n  

[ ca r t  de r iv ]  = [J]-l [ c u r v  der iv]  

Apply ( A 8 )  t o  St, c,, etc. t o  give 

(A7 1 

Before equat ions  (A9) are used i n  equat ion  (A5), a s i m p l i f i c a t i o n  i s  

p o s s i b l e .  Th i s  s i m p l i f i c a t i o n  is achieved by m u l t i p l y i n g  (A51 by J and 

u s i n g  t h e  product r u l e  f o r  d e r i v a t i v e s  i n  t h e  fo l lowing  p a r t i c u l a r  form. 
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ac - - a 
J k m  E - a k  

( JkmC)  - C a (Jk,) (A101 

where k = ( E ,  n ,  5 ,  T I ,  m = (x, y, 2, t )  and C = ( 4 ,  f ,  g, h ) ,  r e s p e c t i v e l y .  

Doing s o  y i e l d s  an equat ion  of the form 

a a - a T  [Jq] '  + as [J(Etq + S,f + Syg + Szh) ]  * + 3 + 4 

Terms 3 and 4 are j u s t  l i k e  2 bu t  w i t h  n o r  5 r e p l a c i n g  5. S i m i l a r l y ,  terms 

7 and 8 a r e  l i k e  6 bo th  with g a n d  y o r  h and z r e p l a c i n g  f and x. 

The bracketed q u a n t i t i e s  i n  terms 5 through 8 of t h i s  equa t ion  are the ,  

s o - c a l l e d ,  i n v a r i a n t s  of  the t ransformat ion  and are zero.  This  can be shown i n  

a ' b r u t e  f o r c e '  s o r t  of way as follows. Consider the  bracketed q u a n t i t y  i n  

term 6: 

a a a - (JS,) + ~ r l  ( J n X )  + - (JSX) as as 

c h a i n  r u l e  

a aJ a aJ a aJ 
= J -  as 5, + ~ X Z  + - an  n x +  ~ X G +  J z % +  

r e a r r a n g e  

a aJ aJ aJ 
+ -  5 1 + 5, 

+ nx 5 + 5 ,  as a a 
as x an n~ a5 x = J ( - S  + -  

change o r d e r  of  d i f f e r e n t i a t i o n  and use  ( A 3 1  

a a  a a a = J -  ( - ~ + - n + - ~ )  + s J  
ax  as an  a5 
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ev a1 u a t  e 

= 0 + 0 ( i f  change o rde r  of d i f f e r e n t i a t i o n ) .  

Terms 5 ,  7 and 8 behave s i m i l a r l y .  

Equat ion  (All) is now of t h e  form 

The q u a n t i t i e s  c f ,  5,, - 0 -  , cy,  5, can be replaced by equat ions  ( A 9 1  t o  

f i n a l l y  y i e l d  a n  express ion  e n t i r e l y  i n  terms of c u r v i l i n e a r  d e r i v a t i v e s ,  

and the  t r ans fo rma t ion  is t h u s  complete. 



Appendix B .  Equat ion Hierarchy  

Equat ions  ( 1  6 )  and (18)  a c t u a l l y  r e p r e s e n t  systems of equa t ions  imbedded 

i n  a system of equat ions.  T h a t  is what is meant, f o r  example, by t h e  descr ip-  

t i o n  t h a t  (16)  is a lower block b id i agona l  system. The block is, i t s e l f  a 

sys tem of equat ions .  To show t h i s  c l e a r l y ,  l e t  us  cons ide r  a d i f f e r e n t  fac- 

t o r i z a t i o n  of equat ion  (12)  which w i l l  y i e l d  t h e  same h i e r a r c h y  of systems as 

i n  (16)  and (18) but  w i t h  fewer terms. The s t r u c t u r e  of t h e  systems w i l l  then  

no t  be  obscured w i t h  lengthy  express ions .  

Equat ion  (12)  can  be f ac to red  as 

( I  + A T ~ ~ A ~ ) ( I  + A T ~ ~ ~ A ; ) ( I  + A ~ G . B ~ ) ( I  + A& B;)(I + ~,c:)(I + 6k~')~~n = 
J J 

-A*R" ( B 1 )  

and so lved  i n  a s i x  s t e p  scheme 

( I  + A T ~ ~ A - ) x ~ =  + -ATR n 

(I + A T ~ ~ A s ~ x ~  = x" 

( I  + A ~ t i , c ; ) X  6 5  = X 

A Q ~  = x6 

The mot iva t ion  f o r  t h i s  f a c t o r i z a t i o n  and scheme and t h e  s o l u t i o n  process  are 

e x a c t l y  t h e  same as descr ibed f o r  equa t ions  (13) and ( 1 4 ) .  

Let u s  cons ider  t h e  f i rs t  equat ion i n  (B21), 

( I  + A ~ 6 ~ A f ) x '  = X1 + A r G i ( A  + X,) = -ATR n 
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and write ou t  t h e  d i f f e r e n c e  opera tor  w i t h  i n d i c e s  as described f o r  equa t ions  

(16 )  - (19 ) .  

= 1 11 + n  
' i , j , k  1 + A T [ A + ( Q y , j , k  11 i , J , k  X' i , j , k  A T [ A  ( Q i - l , , j , k  i - l , j , k x i - l , j , k  

We m u s t  r e a l i z e  s e v e r a l  f a c t s  concerning equa t ion  ( B 4 )  and its no ta t ion .  The 

(i,j,k) s u b s c r i p t s  refer t o  s p a t i a l  l o c a t i o n ,  t h e  1 s u p e r s c r i p t  t o  the so lu-  

t i o n  pass and t h e  n s u p e r s c r i p t  to  the  time l e v e l .  I n  a d d i t i o n ,  a t  each 

( i ,  j , k )  l o c a t i o n  there a r e  5 d i s t i n c t  Qn ( r e p r e s e n t i n g  p ,pu,pv,pw, e )  and 

+ aFR+ so that  there are 25 A consequent ly  5 d i s t i n c t  X . F i n a l l y ,  A denotes  - 1 + 

+ 
terms s i n c e  there are 5 f l u x  vec tors  Fk .  

To d i s p l a y  t h e  s t r u c t u r e  c l e a r l y ,  suppose there are only 6 cel ls  i n  the  i 

d i r e c t i o n .  Also suppose we are  eva lua t ing  ( B 4 )  a l o n g  a l i n e  of cons t an t  j and 

k so  tha t  t h e  ( j , k )  i n d i c e s  can be dropped. F u r t h e r ,  l e t  us  drop t h e  super- 

s c r i p t s  f o r  t h i s  example and f i n a l l y  l e t  A s t a n d  f o r  ATA+.  Then ( B 4 )  becomes 

Xi + AiXi - Ai-, X i-, = - A T R ~  wi th  i = 2,6 

Wri t ing  ( B 5 )  o u t  g i v e s  

= x, x1 

,- A ,  X, + ( 1  + A2)X2  = -ATR 2 

3 - A2 X2 + (1  + A3)X3  = -ATR 

- A X + (1  + A 4 ) X 4  = - A T R ~  

- A X + (1  + A 5 ) X 5  = -ATR 

3 3  

4 4  5 
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- A X + (1  + A6)X6 = -A-rR6 5 5  

- -  
x1 

x2 

x4 

x5 

X 
3 

‘6 - -  

or .  

= -AT 

- i n  matrix form - 
1 0 0 0 0 0 

A1 1 + A 2  0 0 0 0 

O A2 

1 +A4 0 0 

0 0 0 3 1 +A 

O A3 0 

0 0 0 A 4  l + A  

0 0 0 

0 

1 +A6 

5 

O A5 - - 

The lower b id i agona l  form of (B6b) is now clear. Remember tha t  t h e  s u b s c r i p t s  

1 th rough 6 h e r e  r e f e r  t o  spa t i a l  l o c a t i o n s .  

Now l e t  us  cons ide r  t h e  detai ls  of any one of the  equa t ions  i n  (B6a) or 

(B6b). That  is, w e  now have a f ixed  va lue  of i and t h e r e f o r e  a r e  cons ide r ing  

a p a r t i c u l a r  l o c a t i o n  i n  space .  S ince  (B5) r e p r e s e n t s  a t y p i c a l  equa t ion  i n  

(B6),  w e  can use (B5) r e a l i z i n g  t h a t  i is f i x e d  and r e a r r a n g e  t o  g ive  

( 1  + A i ) X i  = -A.rRi + Ai-lXi-l  (I37 1 

But, a t  each i there are 5 d i s t i n c t  components of X (say,  xI1, R = 1 , 5 )  and 25 

d i s t i n c t  A terms. Thus (87) a c t u a l l y  expresses  the  fo l lowing  mat r ix  equa t ion  

I -  1 

. 
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Here the  number s u b s c r i p t 8  refer t o  the  dependent v a r i a b l e s  (Ql ,Q2,Q3,Q4,Q5) = 

(p ,pu ,pv ,pw,e)  while  t h e  i s u b s c r i p t s  r e f e r  t o  t h e  l o c a t i o n ,  which is now 

f i x e d .  So, each equat ion  i n  the f a c t o r e d  scheme ( B 2 )  r e p r e s e n t s  a system of 

equa t ions  (B6b) over space. Each equa t ion  i n  system (B6b), i n  t u r n ,  repre-  

s e n t s  a system of equat ions  (B8) over t h e  dependent v a r i a b l e s .  T h i s  l a s t  

system ( 3 8 )  is t h e  "block" i n  the block b id i agona l  d e s c r i p t o r .  No t i ce  t h a t  

t h i s  sys t em (B8) is similar t o  system (8 )  i n  the  main t e x t .  

The procedure  descr ibed above would be carried ou t  for each of t h e  s i x  

s t e p s  i n  sys t em (B2), w i t h  appropr i a t e  care i n  e v a l u a t i n g  the d i f f e r e n c e  

o p e r a t o r s  as described for equat ions  ( 1 7 )  and (19) .  As a note ,  t he  s i x  s t e p  

scheme of (B2) s a t i s f a c t o r i l y  provides s o l u t i o n s  t o  t he  Eu le r  equat ions .  I t  

r e q u i r e s  more computation t h a n  the  two s t e p  scheme i n  t h e  p r e s e n t  program bu t  

r e q u i r e s  less  memory and thus  is advantageous when memory l i m i t a t i o n s  are 

s i g n i f i c a n t .  

R e l a t i n g  these ideas back t o  the  p r e s e n t  scheme, w e  see t h a t  equa t ions  

( 1 4 )  correspond t o  ( B 2 ) ,  equation (16)  t o  ( B 4 ) ,  and (17)  t o  (B7). Thus, the 

first equa t ion  i n  t h e  f a c t o r e d  scheme ( 1 4 )  r e p r e s e n t s  a lower b lock  b id i agona l  

system of e q u a t i o n s ,  (16).  Each equa t ion  i n  system (161, i n  t u r n ,  r e p r e s e n t s  

a sys t em of e q u a t i o n s  (17) over the dependent v a r i a b l e s  f o r  f i x e d  ( i , j , k ) .  I n  

a similar f a s h i o n ,  the second equa t ion  i n  ( 1 4 )  r e p r e s e n t s  an  upper block 

b id i agona l  system which is expressed i n  equa t ion  (18).  For f i x e d  ( i , j , k )  each 

equa t ion  i n  system (18) r ep resen t s  a system of equa t ions ,  r ep resen ted  by 

equa t ion  (19 ) ,  over  t h e  dependent v a r i a b l e s .  
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Appendix C. Eigensystems of the  Transformed Eu le r  Equations 

The development of  t h e  e igenvalues ,  e igenvec to r s  and s p l i t  f l u x  vec- 

t o r s  of t h e  transformed E u l e r  equat ions  is b r i e f l y  presented  here.  T h i s  presen- 

t a t i o n  w i l l  be i n  condensed n o t a t i o n  t o  emphasize t he  e s s e n t i a l  steps. Details 

of the  development, p a r t i c u l a r l y  i n  r ega rd  t o  t h e  a c t u a l  elements i n  t h e  va r ious  

m a t r i c e s  are  a v a i l a b l e  i n  References 1 and 2. I n  a d d i t i o n ,  s e v e r a l  theorems and 

o p e r a t i o n s  of matrices and l inear  a l g e b r a  a re  r e q u i r e d  and these a r e  documented 

i n  any q u a l i t y  t e x t  on l i n e a r  a lgeb ra  o r  numerical a n a l y s i s .  

To a i d  i n  t h e  d e s c r i p t i o n  i t  is h e l p f u l  t o  first d e f i n e  some no ta t ion .  

C e r t a i n  terms rep resen t  any one of t h r e e  terms depending on the d i r e c t i o n  ( i n  

computa t iona l  space) of i n t e r e s t .  These are 

k = C , n , q  = c u r v i l i n e a r  d i r e c t i o n s  

K = F,G,H = f l u x  v e c t o r s  (see equat ion  ( 2 )  i n  main t e x t )  

- 8K K = - = A , B , C  = f l u x  Jacobian  matrices, where t h e  Q are t h e  dependent 
3Q v a r i a b l e s  i n  t he  conse rva t ive  form of the  Euler  equa- 

t i o n s  (eqn ( 2 ) )  

K = a , b , c  = c o e f f i c i e n t  ma t r i ces  f o r  t h e  nonconserva t ive  E u l e r  equa t ions  

T y p i c a l l y  these are used  such t h a t  when k = 5 then  K=F, R=A and K=a, and so on 

f o r  k=n and k=c. Another item of n o t a t i o n  here is tha t  when ( T , [ , I I , ~ )  appear as 

s u b s c r i p t s  they refer t o  d e r i v a t i v e s  (3/a.r, a/3C, a / a q ,  a /a l ; ) .  s i m i l a r l y ,  

( x , y , z )  s u b s c r i p t s  mean ( a / a x ,  Way, 3 / 3 2 ) .  A l l  o t h e r  s u b s c r i p t s  w i l l  - not  i n d i -  

cate d i f f e r e n t i a t i o n .  

We may now proceed w i t h  the development. The s t a r t i n g  p l ace  is t h e  E u l e r  

e q u a t i o n s  i n  conse rva t ive  form and i n  c u r v i l i n e a r  coord ina te s ,  

Q, + FS + G,, + H c = O  

T h i s  can b e  w r i t t e n  i n  t h e  q u a s i l i n e a r  form 
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Q, + AQg + BQ, + CQs = 0 (C2) 

where, reca l l ,  A = aF/aQ, B = a G / a Q ,  C = a H / a Q  are terms of K. 
With t h e  governing equat ion  w r i t t e n  as ( C 2 )  t he  e igenvalues  of t he  govern- 

i n g  e q u a t i o n  are, i n  fac t ,  the eigenvalues  of t h e  f l u x  Jacobian  matrices R. How- 

e v e r ,  when i? is a c t u a l l y  w r i t t e n  out (see Appendix D) it is s e e n  t h a t  there are 

very  few z e r o  elements in R and consequently t h a t  i t  would be a d i f f i c u l t  t a s k  

t o  e x t r a c t  t he  eigenvalues  of E. To f i n d  the  eigenvalues ,  a s i m i l a r i t y  t r a n s -  

f o r m a t i o n  ( t h a t  is, one which preserves  t he  e igenvalues)  of is sought  which 

y i e l d s  a mat r ix  w i t h  many more zero elements  and hence makes e x t r a c t i o n  of  t h e  

e igenvalues  of &ore  tractable.  

t h e  nonconservat ive form of t h e  Euler equat ions  

T h i s  t ransformat ion  i s  achieved by cons ider ing  

q, + aqg + bq, + cq5 = 0 (C3) 

where q = J[p,u,v,w,plT.  

Now ( C 2 )  can be  w r i t t e n  as 

Mq, + AMqE + BMq, + CMq = 0 5 

where M = aQ/aq. 

M u l t i p l y  (C4) by M-l t o  g ive  ( w i t h  I = i d e n t i t y  mat r ix)  

Iq ,  + M-’AMqE + Mi’BMq,, + M-lCMqs = 0 

Comparing (C3) and (C5) we see t h a t  

a = M-lAM, b = M-lBM, c = M-‘CM (C6a) 

and, t h e r e f o r e ,  K = M”B, = MKM-’ (C6b) 

Equat ion (C6b) is the requi red  s i m i l a r i t y  t ransformat ion .  The matrices R and IC 

are similar and t h e r e f o r e  have t h e  same eigenvalues .  Wri t ing  o u t  K we have 
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where 9 k5 kxU+ k V+ k,w Y pk,  0 ‘k P k X  P k Y  

0 0 0 k X /  p pc2 = Y ( ( Y - l ) e - p + )  

(C7 1 y-1 2 2 2 ( u  + v  +w 1 

K =  1 ! kxpc  kyPc l k  :I] 
kzpc g k  

The e igenva lues ,  Ak, are found from t h e  s o l u t i o n  of 

I K  - I x k (  0 (C8 1 

and are 

w i t h  lVkl = (k: + k$ + kz) 2 1 /2  . 
The e igenvalues  have been found and now t h e  task is t o  f i n d  the  eigen- 

The e igenvec to r s ,  T k ,  corresponding t o  t h e  e igenvalues  are such  v e c t o r s  of K. 
t h a t  

where h k  is t h e  d iagonal  m a t r i x  whose d iagonal  elements are t h e  e igenvalues ,  

(C9).  To determine T k ,  cons ide r  a similar expres s ion  f o r  K 

K E PkAkPk’ ( C 1 1 )  

The ma t r ix  P k  is a l s o  composed of e igenvec to r s  cor responding  t o  t he  e igenva lues  

(C9). Here the  columns of P k  a r e  t h e  r i g h t  e igenvec to r s  of K, each column be ing  

a l i n e a r l y  independent se t  of e igenvec tors .  These e i g e n v e c t o r s  a r e  normalized 

such  t h a t  mu l t ip ly ing  t h e  ma t r ix  of t h e  r i g h t  e igenvec to r s  times the  ma t r ix  of 

the  l e f t  e igenvec to r s  g i v e s  t h e  i d e n t i t y  matrix.  ( A s  exp lana t ion ,  g iven  a ma- 

t r i x  C A I  and CAIx, = Axr then  a is an  e igenvalue  and xr is t h e  corresponding 

r i g h t  e igenvec tor .  S i m i l a r l y  g iven  [A]  and xRCA]=xRA then  A ,  aga in ,  is an eigen- 
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v a l u e  and xR is t h e  corresponding l e f t  e igenvec tor . )  

P k  (refer t o  a good l i n e a r  a lgeb ra  t e x t ) ,  t han  Tk.  

I t  is  much easier t o  f i n d  

Once P k  is found then  T k  can  

be r e a d i l y  ob ta ined  by: 

from (C6b) = MKM-' and Using (c11)  then ,  i? = MPkAkpk1M-l 

SO t h a t  Tk = MPk, Ti' = M -1 P k  -1 ( C 1 2 )  

The e igenva lues  and e igenvec tors  of t h e  f l u x  Jacob ian  ma t r i ces  are now 

a v a i l a b l e  i n  (C9) and (C12). I t  remains t o  o b t a i n  t he  f l u x  v e c t o r s  as a l i n e a r  

expans ion  i n  t he  e igenvalues  (eqn  (10)) .  Because the  f l u x  vec to r s  are homogene- 

ous of degree one i n  t he  Q's we can write,  by invoking E u l e r ' s  Theorem 

K = RQ (C13) 

( E s s e n t i a l l y ,  a homogeneous func t ion  f ( x ) ,  s a y ,  of degree n is one such t h a t  

f (  a x )  = a n f ( x )  where a is a constant.  E u l e r ' s  Theorem e s s e n t i a l l y  says tha t  f o r  

f ( x )  con t inuous ly  d i f f e r e n t i a b l e  and homogeneous of degree n, then  x df/dx = nf .  

These ideas can b e  extended t o  func t ions  of s e v e r a l  v a r i a b l e s . )  

Using ( C 1 0 )  i n  (C l3 )  g ives  

K = T k A k T k l Q  ( C 1 4 )  

We can w r i t e  t h e  diagonal matrix hk as the  sum 

(C15) 

is a mat r ix  with 1 as t he  first 3 diagonal elements and 0 where I 

e lsewhere ,  I4  has 1 as the f o u r t h  d iagonal  element wi th  0 elsewhere and 

1 4 5 
'k = 'k11,2,3 + 'k14 + 'k'5 

1 ,2 ,3  

I5 has 1 as the  f i f t h  diagonal element wi th  0 elsewhere.  Then 

4 T- lQ  + XkTk14Ti1Q + XzTk15Tk1Q 1 
'kTk11,2,3 k (C16a) 

(C16b) 
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Equa t ion  (C16) is  t h e  expansion of the  f l u x  vectors  i n  t h e  e igenvec to r s  and is 

t h e  d e s i r e d  s p l i t  form. 

n a l l y  have 

Y-1 K 1 = J -  Y 

When t h e  d e t a i l s  of K1 ,K2 and K are  determined we fi- 3 

J 
% = 2 y  

p u+ p c k; 

P 

Y pv+pck 

e+ p+ p ce -1 

J K3 = - 2Y 
I 

- - 
P 

p u-pck; 

- 
P v- P Cky 

p w- p ciiz 

- 
e+ p-p c0 k 
- - 

(C17) 

where (Ex,E ,E ,Gk) = (k , k  ,k,,Bk)/lVkl and 4 and 8 k  are de f ined  wi th  equa t ion  

(C7 1. 
Y Z  X Y  
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Appendix D .  Eva lua t ion  of t he  Flux Jacobian  Matrices 

The dependent v a r i a b l e s  of t h e  conserva t ive ,  transformed Eu le r  equa t ions  

are 

The f l u x  v e c t o r s  a r e  K = F,C,H and are g iven  by 

(C16b) 

a r e  given i n  equat ion  (C17) and are g iven  by 

The f l u x  Jacob ian  matrices a r e  formed by d i f f e r e n t i a t i n g  K with 

1,2,3 where the  subvec to r s  K 

e q u a t i o n  (C8). 

r e s p e c t  t o  Q, 

Agm aFg/3Qm, Bim = aG,/aQ,, C aHg/aQ, (6b )  

I n  o r d e r  t o  c a r r y  out  the  d i f f e r e n t i a t i o n s ,  it is necessary  t o  write the  f l u x  

v e c t o r s  e x p l i c i t l y  i n  terms of the  conserved v a r i a b l e s ,  Q. For example, t he  

second element i n  t he  K2 subvec tor ,  K33, is 
LL 

Now, from (C7) 

and w e  can write 

2 2 2 1/2 P(U + v  +w > >  1 = (y(Y-1))1/2(Jp * J ( e  - - 2 J P C  = ( Jp*Jpc  ) 

o r  



. 

So, K22 becomes 

4 We now t u r n  our  a t t e n t i o n  t o  Xk, 

F i n a l l y ,  t o  c o n s t r u c t  the  c o n t r i b u t i o n  of K22 t o  K we must mul t ip ly  (D2) and 

( D 4 )  t o g e t h e r .  C l e a r l y ,  the c o n t r i b u t i o n  is a l e n g t h y  express ion .  Moreover, 

t h i s  product  is on ly  one of t h e  f i f t e e n  terms which compose K from (C16b). Suf- 

f i c e  t o  s a y ,  the  t o t a l  express ion  f o r  K is q u i t e  involved. 

Once a l l  f i f t e e n  terms of K a r e  cons t ruc t ed ,  i n  the  manner descr ibed above, 

the d e r i v a t i v e s  w i t h  r e s p e c t  t o  the  f i v e  Q’s can be ob ta ined .  Now, we must re- 

member tha t  t h e  s o l u t i o n  a lgor i thm is based not  on ly  on s p l i t t i n g  the  f l u x  vec- 

t o r s  i n t o  terms w i t h  e igenvalues  as c o e f f i c i e n t s  b u t  t h e  f l u x e s  are fur ther  

s p l i t  accord ing  t o  t he  s i g n  of the eigenvalue,  as expressed  i n  ( 1 0 ~ ) .  The f l u x  

J a c o b i a n s  are cor respondingly  s p l i t ,  as i n  ( 1  1 ). Consequently the f i f t e e n  terms 

of K must b e  separated i n t o  terms with p o s i t i v e  and n e g a t i v e  e igenvec tors ;  dif- 

f e r e n t i a t i o n  t h e n  y i e l d s  the  appropr i a t e  f l u x  Jacobian  matrices A’, B’ and C‘. 
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I n  the program t h e  d e r i v a t i v e s  of a l l  f i f t e e n  terms f o r  each of A, B and C 

are  computed. C o e f f i c i e n t s  of e i t h e r  1 o r  0 are then  ass igned  t o  each der iva-  

t i v e  acco rd ing  t o  whether t he  corresponding e igenvalue  i s  p o s i t i v e  o r  n e g a t i v e  

and which f l u x  Jacobian ,  t h e  p l u s  or minus, is being eva lua ted .  Th i s  procedure 

is o rgan ized  i n  an e f f i c i e n t  and o r d e r l y ,  a l though q u i t e  l eng thy ,  scheme. 

I 
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